This paper deals with an innovative low-loss AC switch, named as TBBS (transistor based bidirectional switch), based on the association of super-gain BJTs developed by the GREMAN laboratory. The main characterizatio...This paper deals with an innovative low-loss AC switch, named as TBBS (transistor based bidirectional switch), based on the association of super-gain BJTs developed by the GREMAN laboratory. The main characterization results of the super-gain BJT are reminded to identify the key parameters that are essential to build the TBBS. A complete characterization database in static mode of this new AC switch is discussed. In particular, its forward and reverse-biased features have been measured to see the evolution of the DC current gain as a function of the current density. The TBBS makes sense when using the super-gain BJT (bipolar junction transistor) in reverse mode. It means that the reverse DC current gain has to be sufficient (at least higher than l compared with the conventional BJT one). This new AC switch is bidirectional in current and voltage, totally controllable (turn-on and turn-off) and the most attractive solution in terms of on-state power losses. Further, its manufacturing process is as easier as existing device such as triac.展开更多
为实现模拟前端电路的低功耗增益控制,提出了一种基于控制信号频宽比的可变增益放大器VGA(Variable GainAmplifier),该电路以超再生为基础,能够对增益实施精细控制。与传统的大多数可变增益放大器不同的是,提出的VGA电路在数字控制和放...为实现模拟前端电路的低功耗增益控制,提出了一种基于控制信号频宽比的可变增益放大器VGA(Variable GainAmplifier),该电路以超再生为基础,能够对增益实施精细控制。与传统的大多数可变增益放大器不同的是,提出的VGA电路在数字控制和放大器之间的接口并没有使用任何的直流/交流转换器。最终实现的VGA集成电路使用了0.18 mm CMOS技术进行设计,旨在实现低功率消耗。仿真和测试结果均表明,本文提出的放大器在900 m V的线性范围内最大增益为45 d B,总谐波失真为0.5%,功耗为6.4,相比传统的可变增益放大器,表现出更大的增益范围和较低的功耗。展开更多
文摘This paper deals with an innovative low-loss AC switch, named as TBBS (transistor based bidirectional switch), based on the association of super-gain BJTs developed by the GREMAN laboratory. The main characterization results of the super-gain BJT are reminded to identify the key parameters that are essential to build the TBBS. A complete characterization database in static mode of this new AC switch is discussed. In particular, its forward and reverse-biased features have been measured to see the evolution of the DC current gain as a function of the current density. The TBBS makes sense when using the super-gain BJT (bipolar junction transistor) in reverse mode. It means that the reverse DC current gain has to be sufficient (at least higher than l compared with the conventional BJT one). This new AC switch is bidirectional in current and voltage, totally controllable (turn-on and turn-off) and the most attractive solution in terms of on-state power losses. Further, its manufacturing process is as easier as existing device such as triac.
文摘为实现模拟前端电路的低功耗增益控制,提出了一种基于控制信号频宽比的可变增益放大器VGA(Variable GainAmplifier),该电路以超再生为基础,能够对增益实施精细控制。与传统的大多数可变增益放大器不同的是,提出的VGA电路在数字控制和放大器之间的接口并没有使用任何的直流/交流转换器。最终实现的VGA集成电路使用了0.18 mm CMOS技术进行设计,旨在实现低功率消耗。仿真和测试结果均表明,本文提出的放大器在900 m V的线性范围内最大增益为45 d B,总谐波失真为0.5%,功耗为6.4,相比传统的可变增益放大器,表现出更大的增益范围和较低的功耗。