Cam mechanics is one of the most popular devices for generating irregular motions and is widely used in automatic equipment,such as textile machines,internal combustion engines,and other automatic devices.In order to ...Cam mechanics is one of the most popular devices for generating irregular motions and is widely used in automatic equipment,such as textile machines,internal combustion engines,and other automatic devices.In order to obtain a positive motion from the follower using a rotating cam,its shape should be correctly designed and manufactured.The development of an adequate CAD/CAM system for a cam profile CNC grinding machine is necessary to manufacture high-precision cams.The purpose of this study is the development of a CAD/CAM system and profile measuring device for a CNC grinding machine to obtain an optimal grinding speed with a constant surface roughness.Three types of disk cams were manufactured using the proposed algorithm and procedures to verify effectiveness of the developed CAD/CAM system.展开更多
Be directed against the development trend of modern CNC grinding machine towards high precision and high efficiency, some general weaknesses of existing camber grinding machine are analyzed in detail. In order to deve...Be directed against the development trend of modern CNC grinding machine towards high precision and high efficiency, some general weaknesses of existing camber grinding machine are analyzed in detail. In order to develop new type CNC camber grinding machine that can grind complex die, and genuinely achieved accurate feed and high efficient grinding, a new type camber grinding machine is put forward, called non-transmission virtual-shaft CNC camber grinding machine. Its feed system is a parallel mechanism that is directly driven by linear step motor. Therefore, traditional transmission types, such as the ball lead-screw mechanisms, the gears, the hydraulic transmission system, etc. are cancelled, and the feed system of new type CNC camber grinding machine can truly possess non-creep, good accuracy retentiveness a wide range of feed-speed change, high kinematical accuracy and positioning precision, etc. In order to realize that the cutting motion is provided with high grinding speed, step-less speed variation, high rotational accuracy, good dynamic performance, and non-transmission, the driving technology of hollow rotor motor is applied to drive the spindle of new type grinding machine,thus leading to the elimination of the transmission parts of cutting motion. The principle structure model of new type camber grinding machine is advanced. The selection, control gist and driving circuit line of the linear step motor are expounded. The main technology characteristics and application advantages of non-transmission virtual-shaft CNC camber grinding machine are introduced.展开更多
Inconel 718(IN718)alloy is widely applied to fabricate high temperature resistant or corrosion resistant parts due to its excellent mechanical performance.However,the machining of IN718 alloy is difficult as it may ca...Inconel 718(IN718)alloy is widely applied to fabricate high temperature resistant or corrosion resistant parts due to its excellent mechanical performance.However,the machining of IN718 alloy is difficult as it may cause serious tool wear and poor surface quality(SQ)of the workpiece.In this work,grinding experiments on IN718 alloy at different speeds were conducted by using a CBN grinding wheel.The relationship between grinding speed,SQ and subsurface damage(SSD)was well studied.With increasing grinding speed,surface roughness decreased,and SQ was greatly improved.Meanwhile,the microhardness of the grinding surface declined as the grinding speed increased.The SSD depth was almost unchanged when the grinding speed was lower than 15 m/s,then it decreased with higher grinding speeds.It was attributed to the mechanical-thermal synergistic effect in the grinding process.The results indicated that increasing grinding speed can effectively improve the SQ and reduce the SSD of IN718 alloy.The conclusion in the work may also provide insight into processing other hard-to-machining materials.展开更多
High-efficiency abrasive process with CBN grinding wheel is one of the important techniques of advanced manufacture. Combined with raw and finishing machining, it can attain high material removal rate like turning, mi...High-efficiency abrasive process with CBN grinding wheel is one of the important techniques of advanced manufacture. Combined with raw and finishing machining, it can attain high material removal rate like turning, milling and planning. The difficult-to-grinding materials can also be ground by means of this method with high performance. In the present paper, development status and latest progresses on high-efficiency abrasive machining technologies with CBN grinding wheel relate to high speed and super-high speed grinding, quick point-grinding, high efficiency deep-cut grinding, creep feed deep grinding, heavy-duty snagging and abrasive belt grinding were summarized. The efficiency and parameters range of these abrasive machining processes were compared. The key technologies of high efficiency abrasive machining, including grinding wheel, spindle and bearing, grinder, coolant supplying, installation and orientation of wheel and workpiece and safety defended, as well as intelligent monitor and NC grinding were investigated. It is concluded that high efficiency abrasive machining is a promising technology in the future.展开更多
A compound process that integrates end electrical discharge (ED) milling and mechanical grinding to machine silicon carbide (SiC) ceramics is developed in this paper. The process employs a turntable with several unifo...A compound process that integrates end electrical discharge (ED) milling and mechanical grinding to machine silicon carbide (SiC) ceramics is developed in this paper. The process employs a turntable with several uniformly-distributed cylindrical copper electrodes and abrasive sticks as the tool, and uses a water-based emulsion as the machining fluid. End electrical discharge milling and mechanical grinding happen alternately and are mutually beneficial, so the process is able to effectively machine a large surface area on SiC ceramic with a good surface quality. The machining principle and characteristics of the technique are introduced. The effects of polarity, pulse duration, pulse interval, open-circuit voltage, discharge current, diamond grit size, emulsion concentration, emulsion flux, milling depth and tool stick number on performance parameters such as the material removal rate, tool wear ratio, and surface roughness have been investigated. In addition, the microstructure of the machined surface under different machining conditions is examined with a scanning electron microscope and an energy dispersive spectrometer. The SiC ceramic was mainly removed by end ED milling during the initial rough machining mode, whereas it is mainly removed by mechanical grinding during the later finer machining mode; moreover, the tool material can transfer to the workpiece surface during the compound process.展开更多
基金Project(RTI04-01-03) supported by the Regional Technology Innovation Program of Ministry of Knowledge Economy (MKE),Korea
文摘Cam mechanics is one of the most popular devices for generating irregular motions and is widely used in automatic equipment,such as textile machines,internal combustion engines,and other automatic devices.In order to obtain a positive motion from the follower using a rotating cam,its shape should be correctly designed and manufactured.The development of an adequate CAD/CAM system for a cam profile CNC grinding machine is necessary to manufacture high-precision cams.The purpose of this study is the development of a CAD/CAM system and profile measuring device for a CNC grinding machine to obtain an optimal grinding speed with a constant surface roughness.Three types of disk cams were manufactured using the proposed algorithm and procedures to verify effectiveness of the developed CAD/CAM system.
文摘Be directed against the development trend of modern CNC grinding machine towards high precision and high efficiency, some general weaknesses of existing camber grinding machine are analyzed in detail. In order to develop new type CNC camber grinding machine that can grind complex die, and genuinely achieved accurate feed and high efficient grinding, a new type camber grinding machine is put forward, called non-transmission virtual-shaft CNC camber grinding machine. Its feed system is a parallel mechanism that is directly driven by linear step motor. Therefore, traditional transmission types, such as the ball lead-screw mechanisms, the gears, the hydraulic transmission system, etc. are cancelled, and the feed system of new type CNC camber grinding machine can truly possess non-creep, good accuracy retentiveness a wide range of feed-speed change, high kinematical accuracy and positioning precision, etc. In order to realize that the cutting motion is provided with high grinding speed, step-less speed variation, high rotational accuracy, good dynamic performance, and non-transmission, the driving technology of hollow rotor motor is applied to drive the spindle of new type grinding machine,thus leading to the elimination of the transmission parts of cutting motion. The principle structure model of new type camber grinding machine is advanced. The selection, control gist and driving circuit line of the linear step motor are expounded. The main technology characteristics and application advantages of non-transmission virtual-shaft CNC camber grinding machine are introduced.
基金Supported by Shenzhen Municipal Science and Technology Innovation Commission of China(Grant Nos.KQTD20190929172505711,JSGG20210420091802007,GJHZ20210705141807023).
文摘Inconel 718(IN718)alloy is widely applied to fabricate high temperature resistant or corrosion resistant parts due to its excellent mechanical performance.However,the machining of IN718 alloy is difficult as it may cause serious tool wear and poor surface quality(SQ)of the workpiece.In this work,grinding experiments on IN718 alloy at different speeds were conducted by using a CBN grinding wheel.The relationship between grinding speed,SQ and subsurface damage(SSD)was well studied.With increasing grinding speed,surface roughness decreased,and SQ was greatly improved.Meanwhile,the microhardness of the grinding surface declined as the grinding speed increased.The SSD depth was almost unchanged when the grinding speed was lower than 15 m/s,then it decreased with higher grinding speeds.It was attributed to the mechanical-thermal synergistic effect in the grinding process.The results indicated that increasing grinding speed can effectively improve the SQ and reduce the SSD of IN718 alloy.The conclusion in the work may also provide insight into processing other hard-to-machining materials.
文摘High-efficiency abrasive process with CBN grinding wheel is one of the important techniques of advanced manufacture. Combined with raw and finishing machining, it can attain high material removal rate like turning, milling and planning. The difficult-to-grinding materials can also be ground by means of this method with high performance. In the present paper, development status and latest progresses on high-efficiency abrasive machining technologies with CBN grinding wheel relate to high speed and super-high speed grinding, quick point-grinding, high efficiency deep-cut grinding, creep feed deep grinding, heavy-duty snagging and abrasive belt grinding were summarized. The efficiency and parameters range of these abrasive machining processes were compared. The key technologies of high efficiency abrasive machining, including grinding wheel, spindle and bearing, grinder, coolant supplying, installation and orientation of wheel and workpiece and safety defended, as well as intelligent monitor and NC grinding were investigated. It is concluded that high efficiency abrasive machining is a promising technology in the future.
基金supported by the National Natural Science Foundation of China(50675225)the Scientific Research Personnel Service Project from the Ministry of Science and Technology of China(2009GJC60047)the Independent Innovation Research Project from China University of Petroleum(11CX04031A)
文摘A compound process that integrates end electrical discharge (ED) milling and mechanical grinding to machine silicon carbide (SiC) ceramics is developed in this paper. The process employs a turntable with several uniformly-distributed cylindrical copper electrodes and abrasive sticks as the tool, and uses a water-based emulsion as the machining fluid. End electrical discharge milling and mechanical grinding happen alternately and are mutually beneficial, so the process is able to effectively machine a large surface area on SiC ceramic with a good surface quality. The machining principle and characteristics of the technique are introduced. The effects of polarity, pulse duration, pulse interval, open-circuit voltage, discharge current, diamond grit size, emulsion concentration, emulsion flux, milling depth and tool stick number on performance parameters such as the material removal rate, tool wear ratio, and surface roughness have been investigated. In addition, the microstructure of the machined surface under different machining conditions is examined with a scanning electron microscope and an energy dispersive spectrometer. The SiC ceramic was mainly removed by end ED milling during the initial rough machining mode, whereas it is mainly removed by mechanical grinding during the later finer machining mode; moreover, the tool material can transfer to the workpiece surface during the compound process.