The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-bas...The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-based backfill(CFBF)material under ambient conditions.The performance of CFBF was investigated for different fly ash-cement ratios and compared with non-CO_(2)reacted samples.The fresh CFBF slurry conformed to the Herschel-Bulkley model with shear thinning characteristics.After carbonation,the yield stress of the fresh slurry increased significantly by lowering fly ash ratio due to gel formation.The setting times were accelerated,resulting in approximately 40.6%of increased early strength.The final strength decreased when incorporating a lower fly ash ratio(50%and 60%),which was related to the existing heterogeneous pores caused by rapid fluid loss.The strength increased with fly ash content above 70%because additional C-S(A)-H and silica gels were characterized to precipitate on the grain surface,so the binding between particles increased.The C-S(A)-H gel was developed through the pozzolanic reaction,where CaCO_(3)was the prerequisite calcium source obtained in the CO_(2)-fly ash reaction.Furthermore,the maximum CO_(2)uptake efficiency was 1.39 mg-CO_(2)/g-CFBF.The CFBF material is feasible to co-dispose CO_(2)and fly ash in the mine goaf as negative carbon backfill materials,and simultaneously mitigates the strata movement and water lost in post-subsurface mining.展开更多
It is critical for the material to be of active supporting capacity before initial collapse ot mare root wltn supermgn water material backfill mining, and the maximum bending moment should be first calculated in order...It is critical for the material to be of active supporting capacity before initial collapse ot mare root wltn supermgn water material backfill mining, and the maximum bending moment should be first calculated in order to determine the initial collapse span. In the light of principal of virtual work, the simple expression of deflection, bending moment of elastic clamped plate were deduced under the condition of vertical uniform distributed load, horizontal pressure and supporting by elastic foundation, and then, the maximal bending moment expression was derived too. At the same time, the influence degree on square clamped plate by adding horizontal pressure and elastic foundation were analyzed. The results show that the effect of horizontal pressure on maximal bending moment can be ignored when the value of horizontal pressure is two orders of magni- tude less than that of coeificient of elastic stiffness existing elastic foundation.展开更多
Through analyzing the effects of water consumption, diameter of solid particle, and flow vefority on the fluidity of high water content material slurry, the relatinnship among the fluidity, the isotropy of the slurry,...Through analyzing the effects of water consumption, diameter of solid particle, and flow vefority on the fluidity of high water content material slurry, the relatinnship among the fluidity, the isotropy of the slurry, and the pumping facilities applied in getway-side backfilling has been found. And the requirment of fluidity of high water content material for the design of getway-side back filling technique is put forward in the paper.展开更多
On the basis of the creep test of bigh-water materisl solidifying backfill body(abb. HW body), This paper discusses its creep properties- The visco-elasto-plastic model, which shows the creep properties of HW body, is...On the basis of the creep test of bigh-water materisl solidifying backfill body(abb. HW body), This paper discusses its creep properties- The visco-elasto-plastic model, which shows the creep properties of HW body, is developed, and the creep contitutive equations are deduced. The visco-elastoplastic model is proved by the experiments and practice.展开更多
基金The authors would like to make an appreciation to the National Natural Science Foundation of China(No.51874280)the Fundamental Research Funds of the Central Universities(No.2021ZDPY0211)for financial support.
文摘The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-based backfill(CFBF)material under ambient conditions.The performance of CFBF was investigated for different fly ash-cement ratios and compared with non-CO_(2)reacted samples.The fresh CFBF slurry conformed to the Herschel-Bulkley model with shear thinning characteristics.After carbonation,the yield stress of the fresh slurry increased significantly by lowering fly ash ratio due to gel formation.The setting times were accelerated,resulting in approximately 40.6%of increased early strength.The final strength decreased when incorporating a lower fly ash ratio(50%and 60%),which was related to the existing heterogeneous pores caused by rapid fluid loss.The strength increased with fly ash content above 70%because additional C-S(A)-H and silica gels were characterized to precipitate on the grain surface,so the binding between particles increased.The C-S(A)-H gel was developed through the pozzolanic reaction,where CaCO_(3)was the prerequisite calcium source obtained in the CO_(2)-fly ash reaction.Furthermore,the maximum CO_(2)uptake efficiency was 1.39 mg-CO_(2)/g-CFBF.The CFBF material is feasible to co-dispose CO_(2)and fly ash in the mine goaf as negative carbon backfill materials,and simultaneously mitigates the strata movement and water lost in post-subsurface mining.
基金Supported by the National Natural Science Foundation of China (41071273) the Special Research Fund for the Doctoral Program of Higher Education of China (200090095110002)
文摘It is critical for the material to be of active supporting capacity before initial collapse ot mare root wltn supermgn water material backfill mining, and the maximum bending moment should be first calculated in order to determine the initial collapse span. In the light of principal of virtual work, the simple expression of deflection, bending moment of elastic clamped plate were deduced under the condition of vertical uniform distributed load, horizontal pressure and supporting by elastic foundation, and then, the maximal bending moment expression was derived too. At the same time, the influence degree on square clamped plate by adding horizontal pressure and elastic foundation were analyzed. The results show that the effect of horizontal pressure on maximal bending moment can be ignored when the value of horizontal pressure is two orders of magni- tude less than that of coeificient of elastic stiffness existing elastic foundation.
文摘Through analyzing the effects of water consumption, diameter of solid particle, and flow vefority on the fluidity of high water content material slurry, the relatinnship among the fluidity, the isotropy of the slurry, and the pumping facilities applied in getway-side backfilling has been found. And the requirment of fluidity of high water content material for the design of getway-side back filling technique is put forward in the paper.
文摘On the basis of the creep test of bigh-water materisl solidifying backfill body(abb. HW body), This paper discusses its creep properties- The visco-elasto-plastic model, which shows the creep properties of HW body, is developed, and the creep contitutive equations are deduced. The visco-elastoplastic model is proved by the experiments and practice.