太阳高能粒子事件常伴随太阳耀斑和日冕物质抛射事件(Coronal Mass Ejections,CME)出现,由于太阳高能粒子事件的关键因素是双CME的相互作用,利用SOHO卫星观测的高能粒子强度、耀斑强度以及CME的相对高度与时间,通过高度与时间拟合得到...太阳高能粒子事件常伴随太阳耀斑和日冕物质抛射事件(Coronal Mass Ejections,CME)出现,由于太阳高能粒子事件的关键因素是双CME的相互作用,利用SOHO卫星观测的高能粒子强度、耀斑强度以及CME的相对高度与时间,通过高度与时间拟合得到的速度,分析了2001年4月15日和2005年1月20日的太阳高能粒子事件强度与相关双CME事件的关系,发现这两个太阳高能粒子事件中E≥10 MeV质子的强度与双CME事件无关.因此在这两次太阳高能粒子事件早期,E≥10 MeV质子的强度只与相关太阳耀斑和CME有关.展开更多
对第23太阳周的太阳高能粒子、米波段和DH波段Ⅱ型射电暴的爆发时间和高度进行了统计分析。结果表明:耀斑和日冕物质抛射(coronal mass ejection,CME)产生后,先后爆发米波、DH波Ⅱ型射电暴和高能粒子事件,它们爆发的高度也由低到高。米...对第23太阳周的太阳高能粒子、米波段和DH波段Ⅱ型射电暴的爆发时间和高度进行了统计分析。结果表明:耀斑和日冕物质抛射(coronal mass ejection,CME)产生后,先后爆发米波、DH波Ⅱ型射电暴和高能粒子事件,它们爆发的高度也由低到高。米波、DH波Ⅱ型射电暴的爆发时间和高度同太阳高能粒子事件是否发生并无明显关系,但伴随米波段和DH波段Ⅱ型射电暴的CME有更高的产生太阳高能粒子事件的概率。展开更多
This paper presents the observational results of space energetic particles obtained by the Cosmic Ray Composition Monitor (CRCM)onboard the Chinese satellite, Fengyun-1(B). These results, including those of a few sola...This paper presents the observational results of space energetic particles obtained by the Cosmic Ray Composition Monitor (CRCM)onboard the Chinese satellite, Fengyun-1(B). These results, including those of a few solar proton events, the geomagnetically trapped particles and the anomalous cosmic ray components, were obtained from 3 September 1990 to 15 February 1991. The observed elements include H, He, C, N, O and Fe of energies from 4—23 MeV/n. It was found that the proton fluxes of the Inner Radiation Belt (IRB) increased obviously during the period of solar proton event (SPE). A few kinds of heavy ions (Z≥6) were also detected in the IRB. As to the anomalous cosmic ray component (ACRC), in addition to C, N and O, anomalous iron particles were also recorded. Moreover, the effects of space particle radiation on the satellite are analyzed.展开更多
Relativistic (E >1.6 MeV) electron flux enhancements during Solar Energetic Particle (SEP) events as observed by the synchronous FY-2 satellite at orbit located at 105°E are investigated. Energetic protons dur...Relativistic (E >1.6 MeV) electron flux enhancements during Solar Energetic Particle (SEP) events as observed by the synchronous FY-2 satellite at orbit located at 105°E are investigated. Energetic protons during SEP events heavily contaminate relativistic electron flux measurements. The ratio of the contamination in the original measurement of relativistic electron flux was over 30% during most of the SEP event on July 14, 2000. A method has been developed to eliminate the contamination caused by the energetic protons, and a 'corrected' relativistic electron flux has been obtained. The 'cleaned-up' relativistic electron flux measurement shows that relativistic electron flux enhancement at synchronous orbit is well correlated with SEP events during which the IMF Bz has some southward periods. The enhancement could arise as the transport of relativistic electrons from the upstream solar wind into synchronous orbit via the magnetotail.展开更多
This review paper summarizes the research of Mercury’s magnetosphere in the Post-MESSENGER era and compares its dynamics to those in other planetary magnetospheres,especially to those in Earth’s magnetosphere.This r...This review paper summarizes the research of Mercury’s magnetosphere in the Post-MESSENGER era and compares its dynamics to those in other planetary magnetospheres,especially to those in Earth’s magnetosphere.This review starts by introducing the planet Mercury,including its interplanetary environment,magnetosphere,exosphere,and conducting core.The frequent and intense magnetic reconnection on the dayside magnetopause,which is represented by the flux transfer event"shower",is reviewed on how they depend on magnetosheath plasma β and magnetic shear angle across the magnetopause,followed by how it contributes to the flux circulation and magnetosphere-surface-exosphere coupling.In the next,Mercury’s magnetosphere under extreme solar events,including the core induction and the reconnection erosion on the dayside magnetosphere,as well as the responses of the nightside magnetosphere,are reviewed.Then,the dawn-dusk properties of the plasma sheet,including the features of the ions,the structure of the current sheet,and the dynamics of magnetic reconnection,are summarized.The last topic is devoted to the particle energization in Mercury’s magnetosphere,which includes the energization of the Kelvin-Helmholtz waves on the magnetopause boundaries,reconnection-generated magnetic structures,and the cross-tail electric field.In each chapter,the last section discusses the open questions related to each topic,which can be considered by the simulations and the future spacecraft mission.We end this paper by summarizing the future Bepi Colombo opportunities,which is a joint mission of ESA and JAXA and is en route to Mercury.展开更多
文摘太阳高能粒子事件常伴随太阳耀斑和日冕物质抛射事件(Coronal Mass Ejections,CME)出现,由于太阳高能粒子事件的关键因素是双CME的相互作用,利用SOHO卫星观测的高能粒子强度、耀斑强度以及CME的相对高度与时间,通过高度与时间拟合得到的速度,分析了2001年4月15日和2005年1月20日的太阳高能粒子事件强度与相关双CME事件的关系,发现这两个太阳高能粒子事件中E≥10 MeV质子的强度与双CME事件无关.因此在这两次太阳高能粒子事件早期,E≥10 MeV质子的强度只与相关太阳耀斑和CME有关.
文摘对第23太阳周的太阳高能粒子、米波段和DH波段Ⅱ型射电暴的爆发时间和高度进行了统计分析。结果表明:耀斑和日冕物质抛射(coronal mass ejection,CME)产生后,先后爆发米波、DH波Ⅱ型射电暴和高能粒子事件,它们爆发的高度也由低到高。米波、DH波Ⅱ型射电暴的爆发时间和高度同太阳高能粒子事件是否发生并无明显关系,但伴随米波段和DH波段Ⅱ型射电暴的CME有更高的产生太阳高能粒子事件的概率。
基金Supported by NSF of China(40404014,40336052,40574063,40525014)the startup fund of Chinese Academy of Sciences(KZCX2-SW-144)+1 种基金the China NKBRSF(973)Program(2006CB806304)fund of the Ministry of Education of China(200530,NCET-04-0578).
文摘This paper presents the observational results of space energetic particles obtained by the Cosmic Ray Composition Monitor (CRCM)onboard the Chinese satellite, Fengyun-1(B). These results, including those of a few solar proton events, the geomagnetically trapped particles and the anomalous cosmic ray components, were obtained from 3 September 1990 to 15 February 1991. The observed elements include H, He, C, N, O and Fe of energies from 4—23 MeV/n. It was found that the proton fluxes of the Inner Radiation Belt (IRB) increased obviously during the period of solar proton event (SPE). A few kinds of heavy ions (Z≥6) were also detected in the IRB. As to the anomalous cosmic ray component (ACRC), in addition to C, N and O, anomalous iron particles were also recorded. Moreover, the effects of space particle radiation on the satellite are analyzed.
基金The work of Zhao Hua was partly supported by the National Natural Science r-oundation ot Uhma lurant NOS. 49774245, 49834040) The work of Gao Yul'eng and Liu Zhengxing was supported by the National Natural Science Foundation of China (Grant No. 49834
文摘Relativistic (E >1.6 MeV) electron flux enhancements during Solar Energetic Particle (SEP) events as observed by the synchronous FY-2 satellite at orbit located at 105°E are investigated. Energetic protons during SEP events heavily contaminate relativistic electron flux measurements. The ratio of the contamination in the original measurement of relativistic electron flux was over 30% during most of the SEP event on July 14, 2000. A method has been developed to eliminate the contamination caused by the energetic protons, and a 'corrected' relativistic electron flux has been obtained. The 'cleaned-up' relativistic electron flux measurement shows that relativistic electron flux enhancement at synchronous orbit is well correlated with SEP events during which the IMF Bz has some southward periods. The enhancement could arise as the transport of relativistic electrons from the upstream solar wind into synchronous orbit via the magnetotail.
基金supported by the National Aeronautics and Space Administration(Grant Nos.80NSSC18K1137,80NSSC21K0052)the support of CNES for the Bepi Colombo mission。
文摘This review paper summarizes the research of Mercury’s magnetosphere in the Post-MESSENGER era and compares its dynamics to those in other planetary magnetospheres,especially to those in Earth’s magnetosphere.This review starts by introducing the planet Mercury,including its interplanetary environment,magnetosphere,exosphere,and conducting core.The frequent and intense magnetic reconnection on the dayside magnetopause,which is represented by the flux transfer event"shower",is reviewed on how they depend on magnetosheath plasma β and magnetic shear angle across the magnetopause,followed by how it contributes to the flux circulation and magnetosphere-surface-exosphere coupling.In the next,Mercury’s magnetosphere under extreme solar events,including the core induction and the reconnection erosion on the dayside magnetosphere,as well as the responses of the nightside magnetosphere,are reviewed.Then,the dawn-dusk properties of the plasma sheet,including the features of the ions,the structure of the current sheet,and the dynamics of magnetic reconnection,are summarized.The last topic is devoted to the particle energization in Mercury’s magnetosphere,which includes the energization of the Kelvin-Helmholtz waves on the magnetopause boundaries,reconnection-generated magnetic structures,and the cross-tail electric field.In each chapter,the last section discusses the open questions related to each topic,which can be considered by the simulations and the future spacecraft mission.We end this paper by summarizing the future Bepi Colombo opportunities,which is a joint mission of ESA and JAXA and is en route to Mercury.