The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental mod...The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental modal analysis method. Meanwhile,carbon fiber plain woven laminated / epoxy resin composites with different fiber volume fraction were concerned for comparison. The experimental result of braided specimens shows that the first three orders of natural frequency increase and the first three orders of the damping ratios of specimens decrease, when the fiber volume fraction increases. Furthermore,larger fiber volume fraction will be valuable for the better anti-exiting property of braided composites,and get an opposite effect on dissipation of vibration energy. The fiber volume fraction is an important factor for vibration performance design of braided composites. The comparison between the braided specimens and laminated specimens reveals that 3D braided composites have a wider range of damping properties than laminated composites with the same fiber volume fractions.展开更多
This paper describes a study of three-dimensional braids produced by a four-step 1 × 1 method. An analytical approach is employed in conjunction with experimental investigations to establish the relationship betw...This paper describes a study of three-dimensional braids produced by a four-step 1 × 1 method. An analytical approach is employed in conjunction with experimental investigations to establish the relationship between the braid structure and braiding parameters. Based on microscopic observations, we divide a three-dimensional braid structure into three representative regions, i.e., the interior, surface and corner, and treat the three regions, respectively. Three types of microstructural unit-cell models are then established. The surface characteristics and the relationship between the interior and surface unit-cells have been derived. Good agreement has been obtained between the calculated and measured values of fiber volume fraction of the braided composite samples.展开更多
Three-dimensional(3D)braided composites with better properties have been used in some particular industries.Some have had obvious signs of crack when they are braided.Others have had catastrophic failures occuring wit...Three-dimensional(3D)braided composites with better properties have been used in some particular industries.Some have had obvious signs of crack when they are braided.Others have had catastrophic failures occuring without warning.A new methodology for the analysis of failure modes in composite materials by means of acoustic emission techniques has been developed.The occurrence of fiber-breakage during tensile loading tests has been observed by the acoustic emission technology.Using acoustic emission technology is investigated as a means of monitoring 3D braided composites structures,detecting damage,and predicting impending damage.Some of the findings of the research project were presented.展开更多
Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture ...Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture and lithofacies associations with detailed lithofacies characterizations were comprehensively described to document the architectural model,architectural element scale and gravel particle scale.(1)Nine lithofacies(i.e.,Gmm,Gcm,Gcc,Gci,Gcl,Ss,Sm,Fsm and Fl)were identified and classified as gravel,sand and fine matrix deposits.These are typical depositional features of a mountainous dryland gravel-braided river.(2)Three architectural elements were identified,including channel(CH),gravel bar(GB)and overbank(OB).CH can be further divided into flow channel and abandoned channel,while GB consists of Central Gravel bar(CGB)and Margin Gravel bar(MGB).(3)The gravel bar is the key architectural element of the gravel braided river,with its geological attributes.The dimensions of GBs and their particles are various,but exhibit good relationships with each other.The grain size of GB decreases downstream,but the dimensions of GB do not.The bank erosion affects the GB dimensions,whereas channel incision and water flow velocity influence the grain size of GB.The conclusions can be applied to the dryland gravel braided river studies in tectonically active areas.展开更多
The braided river is a typical river pattern in nature, but there is a paucity of comprehensive data set describing the three-dimensional flow field in the braided river. A physical model experiment was used to study ...The braided river is a typical river pattern in nature, but there is a paucity of comprehensive data set describing the three-dimensional flow field in the braided river. A physical model experiment was used to study the flow characteristics in the typical braided river with a mid-bar between two anabranches. In the experiment, two kinds of mid-bar with the ratios of its length to maximal width of 3 and 5 were considered. Moreover, the mid-bar could be moved to adjust the width of two anabranches. The detailed measurements of velocity were conducted using an acoustic Doppler velocimeter over a grid defined throughout the whole braided river region, including the bifurcation, two anabranches and the confluence. In two kinds of mid-bar braided models, a separation zone was observed in the anabranch of the model in which the ratio of length to maximal width of mid-bar is 3, however the separation zone was not found in another model in which the ratio is 5. In addition, the opposite secondary cells were observed at the bend apex of anabranch in two models, and different longitudinal velocity distributions in the entrance region of anabranch account for this opposite flow structure. Finally, turbulent kinetic energy were shown and compared in different situations. The high turbulence occurs at the place with strong shear, especially at the boundary of the separation zone and the high velocity passing flow.展开更多
基金Tianjin Municipal Science and Technologies Commission,China(Nos.10SYSYJC27800,1ZCKFSF00500)
文摘The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental modal analysis method. Meanwhile,carbon fiber plain woven laminated / epoxy resin composites with different fiber volume fraction were concerned for comparison. The experimental result of braided specimens shows that the first three orders of natural frequency increase and the first three orders of the damping ratios of specimens decrease, when the fiber volume fraction increases. Furthermore,larger fiber volume fraction will be valuable for the better anti-exiting property of braided composites,and get an opposite effect on dissipation of vibration energy. The fiber volume fraction is an important factor for vibration performance design of braided composites. The comparison between the braided specimens and laminated specimens reveals that 3D braided composites have a wider range of damping properties than laminated composites with the same fiber volume fractions.
文摘This paper describes a study of three-dimensional braids produced by a four-step 1 × 1 method. An analytical approach is employed in conjunction with experimental investigations to establish the relationship between the braid structure and braiding parameters. Based on microscopic observations, we divide a three-dimensional braid structure into three representative regions, i.e., the interior, surface and corner, and treat the three regions, respectively. Three types of microstructural unit-cell models are then established. The surface characteristics and the relationship between the interior and surface unit-cells have been derived. Good agreement has been obtained between the calculated and measured values of fiber volume fraction of the braided composite samples.
基金Tianjin Natural Science Sustentation Fund Project,China(No.043600711)Ministry of Education Sustentation Fund Project,China(No.03008)
文摘Three-dimensional(3D)braided composites with better properties have been used in some particular industries.Some have had obvious signs of crack when they are braided.Others have had catastrophic failures occuring without warning.A new methodology for the analysis of failure modes in composite materials by means of acoustic emission techniques has been developed.The occurrence of fiber-breakage during tensile loading tests has been observed by the acoustic emission technology.Using acoustic emission technology is investigated as a means of monitoring 3D braided composites structures,detecting damage,and predicting impending damage.Some of the findings of the research project were presented.
基金supported by the National Science and Technology Major Project(Grant No.2017ZX05008-006004-002)the National Natural Science Foundation of China(Grant Nos.41502126 and 41902155)the Open Foundation of Top Disciplines in Yangtze University(Grant No.2019KFJJ0818022)。
文摘Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture and lithofacies associations with detailed lithofacies characterizations were comprehensively described to document the architectural model,architectural element scale and gravel particle scale.(1)Nine lithofacies(i.e.,Gmm,Gcm,Gcc,Gci,Gcl,Ss,Sm,Fsm and Fl)were identified and classified as gravel,sand and fine matrix deposits.These are typical depositional features of a mountainous dryland gravel-braided river.(2)Three architectural elements were identified,including channel(CH),gravel bar(GB)and overbank(OB).CH can be further divided into flow channel and abandoned channel,while GB consists of Central Gravel bar(CGB)and Margin Gravel bar(MGB).(3)The gravel bar is the key architectural element of the gravel braided river,with its geological attributes.The dimensions of GBs and their particles are various,but exhibit good relationships with each other.The grain size of GB decreases downstream,but the dimensions of GB do not.The bank erosion affects the GB dimensions,whereas channel incision and water flow velocity influence the grain size of GB.The conclusions can be applied to the dryland gravel braided river studies in tectonically active areas.
基金Project supported by the National Natural Science Foundation of China(Grant No.50679019)the National Basic Research Program of China(973Program,Grant No.2008CB418202)+1 种基金the project of"Six Talent Peak"of Jiangsu Province(Grant No.08-C)the Social Technology Development Foundation of Jiangsu Province(Grant No.BS2006095).
文摘The braided river is a typical river pattern in nature, but there is a paucity of comprehensive data set describing the three-dimensional flow field in the braided river. A physical model experiment was used to study the flow characteristics in the typical braided river with a mid-bar between two anabranches. In the experiment, two kinds of mid-bar with the ratios of its length to maximal width of 3 and 5 were considered. Moreover, the mid-bar could be moved to adjust the width of two anabranches. The detailed measurements of velocity were conducted using an acoustic Doppler velocimeter over a grid defined throughout the whole braided river region, including the bifurcation, two anabranches and the confluence. In two kinds of mid-bar braided models, a separation zone was observed in the anabranch of the model in which the ratio of length to maximal width of mid-bar is 3, however the separation zone was not found in another model in which the ratio is 5. In addition, the opposite secondary cells were observed at the bend apex of anabranch in two models, and different longitudinal velocity distributions in the entrance region of anabranch account for this opposite flow structure. Finally, turbulent kinetic energy were shown and compared in different situations. The high turbulence occurs at the place with strong shear, especially at the boundary of the separation zone and the high velocity passing flow.