In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary ...In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary artery dissection(SCAD)phantoms.IVPAI provides high-resolution and high-penetration images of intramural hematoma(IMH)at different depths,so it is especially useful for imaging deep blood clots associated with imaging phantoms.IVOCT can readily visualize the double-lumen morphology of blood vessel walls to identify intimal tears.We also demonstrate the capability of this dual-mode endoscopic system using mimicking phantoms and biological samples of blood clots in ex vivo porcine arteries.The results of the experiments indicate that the combined IVPAI and IVOCT technique has the potential to provide a more accurate SCAD assessment method for clinical applications.展开更多
In a single-pixel fast imaging setup,the data collected by the single-pixel detector needs to be processed by a computer,but the speed of the latter will affect the image reconstruction time.Here we propose two kinds ...In a single-pixel fast imaging setup,the data collected by the single-pixel detector needs to be processed by a computer,but the speed of the latter will affect the image reconstruction time.Here we propose two kinds of setups which are able to transform non-visible into visible light imaging,wherein their computing process is replaced by a camera integration mode.The image captured by the camera has a low contrast,so here we present an algorithm that can realize a high quality image in near-infrared to visible cross-waveband imaging.The scheme is verified both by simulation and in actual experiments.The setups demonstrate the great potential for single-pixel imaging and high-speed cross-waveband imaging for future practical applications.展开更多
Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unc...Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unclear.In this paper,the optical imaging pattern of ISWs in sunglint under different zenith angles of the light source is investigated by collecting optical images of ISWs through physical simulation.The experiment involves setting 10 zenith angles of the light source,which are divided into area a the optical images of ISWs in the three areas show dark-bright mode,single bright band,and bright-dark mode,which are consistent with those observed by optical remote sensing.In addition,this study analyzed the percentage of the dark and bright areas of the bands and the change in the relative gray difference and found changes in both areas under different zenith angles of the light source.The MODIS and ASAR images display a similar brightness-darkness distance of the same ISWs.Therefore,the relationship between the brightness-darkness distance and the characteristic half-width of ISWs is determined in accordance with the eKdV theory and the imaging mechanism of ISWs of the SAR image.Overall,the relationship between them in the experiment is almost consistent with the theoretical result.展开更多
Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible...Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible to probe the complexity of 3D cell cultures but are limited by the inherent opaqueness.While tissue optical clearing methods have emerged as powerful tools for investigating whole-mount tissues in 3D,they often have limitations,such as being too harsh for fragile 3D cell cultures,requiring complex handling protocols,or inducing tissue deformation with shrinkage or expansion.To address this issue,we proposed a modified optical clearing method for 3D cell cultures,called MACS-W,which is simple,highly efficient,and morphology-preserving.In our evaluation of MACS-W,we found that it exhibits excellent clearing capability in just 10 min,with minimal deformation,and helps drug evaluation on tumor spheroids.In summary,MACS-W is a fast,minimally-deformative and fluorescence compatible clearing method that has the potential to be widely used in the studies of 3D cell cultures.展开更多
Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts ...Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness.展开更多
Objective This study aimed to develop and test a model for predicting dysthyroid optic neuropathy(DON)based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid(CSF)in the optic nerve she...Objective This study aimed to develop and test a model for predicting dysthyroid optic neuropathy(DON)based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid(CSF)in the optic nerve sheath.Methods This retrospective study included patients with thyroid-associated ophthalmopathy(TAO)without DON and patients with TAO accompanied by DON at our hospital.The imaging markers of the optic nerve and CSF in the optic nerve sheath were measured on the water-fat images of each patient and,together with clinical factors,were screened by Least absolute shrinkage and selection operator.Subsequently,we constructed a prediction model using multivariate logistic regression.The accuracy of the model was verified using receiver operating characteristic curve analysis.Results In total,80 orbits from 44 DON patients and 90 orbits from 45 TAO patients were included in our study.Two variables(optic nerve subarachnoid space and the volume of the CSF in the optic nerve sheath)were found to be independent predictive factors and were included in the prediction model.In the development cohort,the mean area under the curve(AUC)was 0.994,with a sensitivity of 0.944,specificity of 0.967,and accuracy of 0.901.Moreover,in the validation cohort,the AUC was 0.960,the sensitivity was 0.889,the specificity was 0.893,and the accuracy was 0.890.Conclusions A combined model was developed using imaging data of the optic nerve and CSF in the optic nerve sheath,serving as a noninvasive potential tool to predict DON.展开更多
The parafoveal area,with its high concentration of photoreceptors andfine retinal capillaries,is crucial for central vision and often exhibits early signs of pathological changes.The current adaptive optics scanning l...The parafoveal area,with its high concentration of photoreceptors andfine retinal capillaries,is crucial for central vision and often exhibits early signs of pathological changes.The current adaptive optics scanning laser ophthalmoscope(AOSLO)provides an excellent tool to acquire accurate and detailed information about the parafoveal area with cellular resolution.However,limited by the scanning speed of two-dimensional scanning,thefield of view(FOV)in the AOSLO system was usually less than or equal to 2,and the stitching for the parafoveal area required dozens of images,which was time-consuming and laborious.Unfortunately,almost half of patients are unable to obtain stitched images because of their poorfixation.To solve this problem,we integrate AO technology with the line-scan imaging method to build an adaptive optics line scanning ophthalmoscope(AOLSO)system with a larger FOV.In the AOLSO,afocal spherical mirrors in pairs are nonplanar arranged and the distance and angle between optical elements are optimized to minimize the aberrations,two cylinder lenses are orthogonally placed before the imaging sensor to stretch the point spread function(PSF)for sufficiently digitizing light energy.Captured human retinal images show the whole parafoveal area with 55FOV,60 Hz frame rate and cellular resolutions.Take advantage of the 5FOV of the AOLSO,only 9 frames of the retina are captured with several minutes to stitch a montage image with an FOV of 99,in which photoreceptor counting is performed within approximately 5eccentricity.The AOLSO system not only provides cellular resolution but also has the capability to capture the parafoveal region in a single frame,which offers great potential for noninvasive studying of the parafoveal area.展开更多
Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio fre...Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.展开更多
To verify the effectiveness of digital optical 3D image analyzer EvaSKIN in the objective and quantitative evaluation of wrinkles.A total of 115 subjects were recruited,the facial images of the subjects were collected...To verify the effectiveness of digital optical 3D image analyzer EvaSKIN in the objective and quantitative evaluation of wrinkles.A total of 115 subjects were recruited,the facial images of the subjects were collected by digital optical 3D image analyzer and manual camera,the changes of crow’s feet with age were analyzed.Pictures obtained by manual photography can be directly used for observation and preliminary grading of wrinkles.However,the requirements for evaluators are high,and the results are prone to errors,which will affect the accuracy of the evaluation.Therefore,skilled raters are needed.Compared with the manual photography method,the digital optical 3D image analyzer EvaSKIN can realize three-dimensional extraction of wrinkles,and obtain the change trend of crow’s feet with age.20~30 years old,wrinkles begin to appear slowly;wrinkles will increase rapidly at the age of 30~50;The length of 50~60 year old wrinkles is basically fixed,the wrinkles develop longitudewise,gradually widen and deepen,and the area,depth and volume increase is obvious,and the skin aging condition is intensified.the digital optical 3D image analyzer EvaSKIN realizes the 3D extraction of wrinkles,quantifies the circumference,area,average depth,maximum depth and volume of wrinkles,realizes the objective and quantitative evaluation of wrinkle state,is more accurate in the measurement of wrinkles,and provides a new instrument and method for the evaluation of wrinkles.it is a perfect and supplement to the traditional evaluation methods,and to a certain extent,it helps the research and development and evaluation institutions of cosmetics to obtain more abundant and three-dimensional data support.展开更多
Microspheres can break the diffraction limit and magnify nano-structure imaging,and with its advantages of low cost and label-free operation,microsphere-assisted imaging has become an irreplaceable tool in the life sc...Microspheres can break the diffraction limit and magnify nano-structure imaging,and with its advantages of low cost and label-free operation,microsphere-assisted imaging has become an irreplaceable tool in the life sciences and for precision measurements.However,the tiny size and limited imaging field of traditional solid microspheres cause difficulties when imaging large sample areas.Alternatively,droplets have similar properties to those of microspheres,with large surface curvature and refractive-index difference from the surrounding environment,and they can also serve as lenses to focus light for observation and imaging.Previous work has shown that droplets with controllable size can be generated using an optical tweezer system and can be driven by optical traps to move precisely like solid microspheres.Here,a novel microdroplet-assisted imaging technology based on optical tweezers is proposed that better integrates the generation,manipulation,and utilization of droplets.展开更多
High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional...High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional long baseline amplitude interferometry is susceptible to uncontrollable phase fluctuations,and the technical difficulty increases rapidly as the wavelength decreases.The intensity interferometry inspired by HBT experiment is essentially insensitive to phase fluctuations,but suffers from a narrow spectral bandwidth which results in a lack of effective photons.In this study,we propose optical synthetic aperture imaging based on spatial intensity interferometry.This not only realizes diffraction-limited optical aperture synthesis in a single shot,but also enables imaging with a wide spectral bandwidth,which greatly improves the optical energy efficiency of intensity interferometry.And this method is insensitive to the optical path difference between the sub-apertures.Simulations and experiments present optical aperture synthesis diffraction-limited imaging through spatial intensity interferometry in a 100 nm spectral width of visible light,whose maximum optical path difference between the sub-apertures reaches 69λ.This technique is expected to provide a solution for optical aperture synthesis over kilometer-long baselines at optical wavelengths.展开更多
An optical encryption(OE) scheme based on the spread spectrum ghost imaging(SSGI), named as SSGI-OE, is proposed to obtain a high security with a smaller key. In the scheme, the randomly selected row number of a Hadam...An optical encryption(OE) scheme based on the spread spectrum ghost imaging(SSGI), named as SSGI-OE, is proposed to obtain a high security with a smaller key. In the scheme, the randomly selected row number of a Hadamard matrix of order N is used as the secure key, and shared with the authorized user, Bob, through a private channel. Each corresponding row vector of the order-N Hadamard matrix is then used as the direct sequence code to modulate a speckle pattern for the ghost imaging system, and an image is encrypted with the help of the SSGI. The measurement results from the bucket detector, named as ciphertext, are then transmitted to Bob through a public channel. The illuminating speckle patterns are also shared with Bob by the public channel. With the correct secure key, Bob could reconstruct the image with the aid of the SSGI system, whereas the unauthorized user, Eve, could not obtain any useful information of the encrypted image. The numerical simulations and experimental results show that the proposed scheme is feasible with a higher security and a smaller key. For the 32 × 32 pixels image, the number of bits sent from Alice to Bob by using SSGIOE(M = 1024, N = 2048) scheme is only 0.0107 times over a computational ghost imaging optical encryption scheme.When the eavesdropping ratio(ER) is less than 40%, the eavesdropper cannot acquire any information of the encrypted image. The extreme circumstance for the proposed SSGI-OE scheme is also discussed, where the eavesdropper begins to extract the information when ER is up to 15%.展开更多
Real-time polarization medium-wave infrared(MIR)optical imaging systems enable the acquisition of infrared and polarization information for a target.At present,real-time polarization MIR devices face the following pro...Real-time polarization medium-wave infrared(MIR)optical imaging systems enable the acquisition of infrared and polarization information for a target.At present,real-time polarization MIR devices face the following problems:poor real-time performance,low transmission and high requirements for fabrication and integration.Herein,we aim to improve the performance of real-time polarization imaging systems in the MIR waveband and solve the above-mentioned defects.Therefore,we propose a MIR polarization imaging system to achieve real-time polarization-modulated imaging with high transmission as well as improved performance based on a pixel-wise metasurface micro-polarization array(PMMPA).The PMMPA element comprises several linear polarization(LP)filters with different polarization angles.The optimization results demonstrate that the transmittance of the center field of view for the LP filters is up to 77%at a wavelength of4.0μm and an extinction ratio of 88 d B.In addition,a near-diffraction-limited real-time MIR imaging optical system is designed with a field of view of 5°and an F-number of 2.The simulation results show that an MIR polarization imaging system with excellent real-time performance and high transmission is achieved by using the optimized PMMPA element.Therefore,the method is compatible with the available optical system design technologies and provides a way to realize real-time polarization imaging in MIR wavebands.展开更多
Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent com...Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent computing, subverting the imaging mechanism of traditional optical imaging which only relies on orderly information transmission. To meet the high-precision requirements of traditional optical imaging for optical processing and adjustment, as well as to solve its problems of being sensitive to gravity and temperature in use, we establish an optical imaging system model from the perspective of computational optical imaging and studies how to design and solve the imaging consistency problem of optical system under the influence of gravity, thermal effect, stress, and other external environment to build a high robustness optical system. The results show that the high robustness interval of the optical system exists and can effectively reduce the sensitivity of the optical system to the disturbance of each link, thus realizing the high robustness of optical imaging.展开更多
Cells are the basic unit of human organs that are not fully understood.The revolutionary advancements of optical imaging alowed us to observe single cells in whole organs,revealing the complicated composition of cells...Cells are the basic unit of human organs that are not fully understood.The revolutionary advancements of optical imaging alowed us to observe single cells in whole organs,revealing the complicated composition of cells with spatial information.Therefore,in this review,we revisit the principles of optical contrast related to those biomolecules and the optical techniques that transform optical contrast into detectable optical signals.Then,we describe optical imaging to achieve threedimensional spatial discrimination for biological tisutes.Due to the milky appearance of tissues,the spatial information burred deep in the whole organ.Fortunately,strategies developed in the last decade could circumvent this issue and lead us into a new era of investigation of the cells with their original spatial information.展开更多
AIM:To characterize spectral-domain optical coherence tomography(SD-OCT)features of chorioretinal folds in orbital mass imaged using enhanced depth imaging(EDI).METHODS:Prospective observational case-control study was...AIM:To characterize spectral-domain optical coherence tomography(SD-OCT)features of chorioretinal folds in orbital mass imaged using enhanced depth imaging(EDI).METHODS:Prospective observational case-control study was conducted in 20 eyes of 20 patients,the uninvolved eye served as a control.All the patients underwent clinical fundus photography,computed tomography,EDI SDOCT imaging before and after surgery.Two patients with cavernous hemangiomas underwent intratumoral injection of bleomycin A5;the remaining patients underwent tumor excision.Patients were followed 1 to 14mo following surgery(average follow up,5.8mo).RESULTS:Visual acuity prior to surgery ranged from 20/20 to 20/200.Following surgery,5 patients’visual acuity remained unchanged while the remaining 15 patients had a mean letter improvement of 10(range 4 to 26 letters).Photoreceptor inner/outer segment defects were found in 10 of 15 patients prior to surgery.Following surgical excision,photoreceptor inner/outer segment defects fully resolved in 8 of these 10 patients.CONCLUSION:Persistence of photoreceptor inner/outer segment defects caused by compression of the globe by an orbital mass can be associated with reduced visual prognosis.Our findings suggest that photoreceptor inner/outer segment defects on EDI SD-OCT could be an indicator for immediate surgical excision of an orbital mass causing choroidal compression.展开更多
BACKGROUND Radionuclides produce Cherenkov radiation(CR),which can potentially activate photosensitizers(PSs)in phototherapy.Several groups have studied Cherenkov energy transfer to PSs using optical imaging;however,c...BACKGROUND Radionuclides produce Cherenkov radiation(CR),which can potentially activate photosensitizers(PSs)in phototherapy.Several groups have studied Cherenkov energy transfer to PSs using optical imaging;however,cost-effectively identifying whether PSs are excited by radionuclide-derived CR and detecting fluorescence emission from excited PSs remain a challenge.Many laboratories face the need for expensive dedicated equipment.AIM To cost-effectively confirm whether PSs are excited by radionuclide-derived CR and distinguish fluorescence emission from excited PSs.METHODS The absorbance and fluorescence spectra of PSs were measured using a microplate reader and fluorescence spectrometer to examine the photo-physical properties of PSs.To mitigate the need for expensive dedicated equipment and achieve the aim of the study,we developed a method that utilizes a chargecoupled device optical imaging system and appropriate long-pass filters of different wavelengths(manual sequential application of long-pass filters of 515,580,645,700,750,and 800 nm).Tetrakis(4-carboxyphenyl)porphyrin(TCPP)was utilized as a model PS.Different doses of copper-64(^(64)CuCl_(2))(4,2,and 1 mCi)were used as CR-producing radionuclides.Imaging and data acquisition were performed 0.5 h after sample preparation.Differential image analysis was conducted by using ImageJ software(National Institutes of Health)to visually evaluate TCPP fluorescence.RESULTS The maximum absorbance of TCPP was at 390-430 nm,and the emission peak was at 670 nm.The CR and CRinduced TCPP emissions were observed using the optical imaging system and the high-transmittance long-pass filters described above.The emission spectra of TCPP with a peak in the 645-700 nm window were obtained by calculation and subtraction based on the serial signal intensity(total flux)difference between^(64)CuCl_(2)+TCPP and^(64)CuCl_(2).Moreover,the differential fluorescence images of TCPP were obtained by subtracting the^(64)CuCl_(2)image from the^(64)CuCl_(2)+TCPP image.The experimental results considering different^(64)CuCl_(2)doses showed a dosedependent trend.These results demonstrate that a bioluminescence imaging device coupled with different longpass filters and subtraction image processing can confirm the emission spectra and differential fluorescence images of CR-induced TCPP.CONCLUSION This simple method identifies the PS fluorescence emission generated by radionuclide-derived CR and can contribute to accelerating the development of Cherenkov energy transfer imaging and the discovery of new PSs.展开更多
In liver tumor surgery,the recognition of tumor margin and radical resection of microcancer focis have always been the crucial points to reduce postoperative recurrence of tumor.However,naked-eye inspection and palpat...In liver tumor surgery,the recognition of tumor margin and radical resection of microcancer focis have always been the crucial points to reduce postoperative recurrence of tumor.However,naked-eye inspection and palpation have limited effectiveness in identifying tumor boundaries,and traditional imaging techniques cannot consistently locate tumors in real time.As an intraoperative real-time navigation imaging method,NIRfluorescence imaging has been extensively studied for its simplicity,reliable safety,and superior sensitivity,and is expected to improve the accuracy of liver tumor surgery.In recent years,the research focus of NIRfluorescence has gradually shifted from the-rst near-infrared window(NIR-I,700–900 nm)to the second near-infrared window(NIR-II,1000–1700 nm).Fluorescence imaging in NIR-II reduces the scattering effect of deep tissue,providing a preferable detection depth and spatial resolution while signi-cantly eliminating liver autofluorescence background to clarify tumor margin.Developingfluorophores combined with tumor antibodies will further improve the precision offluorescence-guided surgical navigation.With the development of a bunch offluorophores with phototherapy ability,NIR-II can integrate tumor detection and treatment to explore a new therapeutic strategy for liver cancer.Here,we review the recent progress of NIR-IIfluorescence technology in liver tumor surgery and discuss its challenges and potential development direction.展开更多
Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater ta...Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater target detection.Polarization imaging can reduce the influence of backscattered light and obtain high-quality images underwater.The optical flow shows the motion and structural information of the target.We use polarized optical flow to obtain the optical flow field and estimate the target motion.The experimental results of different targets under varying water turbidity levels illustrate that our method is realizable and robust.The precision is verified by comparing the results with the precise displacement data and calculating two error measures.The proposed method based on polarized optical flow can obtain accurate displacement information and a good recognition effect.Moving target segmentation based on the Otsu method further proves the superiority of the polarized optical flow under turbid water.This study is valuable for target detection and motion estimation in scattering environments.展开更多
基金funding from the National Natural Science Foundation of China(NSFC)under grants 61627827,61705068the Natural Science Foundation of Fujian Province 2021J01813the Fujian Medical University Research Foundation of Talented Scholars XRCZX2021004.
文摘In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary artery dissection(SCAD)phantoms.IVPAI provides high-resolution and high-penetration images of intramural hematoma(IMH)at different depths,so it is especially useful for imaging deep blood clots associated with imaging phantoms.IVOCT can readily visualize the double-lumen morphology of blood vessel walls to identify intimal tears.We also demonstrate the capability of this dual-mode endoscopic system using mimicking phantoms and biological samples of blood clots in ex vivo porcine arteries.The results of the experiments indicate that the combined IVPAI and IVOCT technique has the potential to provide a more accurate SCAD assessment method for clinical applications.
文摘In a single-pixel fast imaging setup,the data collected by the single-pixel detector needs to be processed by a computer,but the speed of the latter will affect the image reconstruction time.Here we propose two kinds of setups which are able to transform non-visible into visible light imaging,wherein their computing process is replaced by a camera integration mode.The image captured by the camera has a low contrast,so here we present an algorithm that can realize a high quality image in near-infrared to visible cross-waveband imaging.The scheme is verified both by simulation and in actual experiments.The setups demonstrate the great potential for single-pixel imaging and high-speed cross-waveband imaging for future practical applications.
基金National Natural Science Foundation of China (Nos.61871353 and 42006164)for their support。
文摘Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unclear.In this paper,the optical imaging pattern of ISWs in sunglint under different zenith angles of the light source is investigated by collecting optical images of ISWs through physical simulation.The experiment involves setting 10 zenith angles of the light source,which are divided into area a the optical images of ISWs in the three areas show dark-bright mode,single bright band,and bright-dark mode,which are consistent with those observed by optical remote sensing.In addition,this study analyzed the percentage of the dark and bright areas of the bands and the change in the relative gray difference and found changes in both areas under different zenith angles of the light source.The MODIS and ASAR images display a similar brightness-darkness distance of the same ISWs.Therefore,the relationship between the brightness-darkness distance and the characteristic half-width of ISWs is determined in accordance with the eKdV theory and the imaging mechanism of ISWs of the SAR image.Overall,the relationship between them in the experiment is almost consistent with the theoretical result.
基金support from the National Key Research and Development Program of China(Grant No.2017YFA0700501),and the Innovation Fund of WNLO.
文摘Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible to probe the complexity of 3D cell cultures but are limited by the inherent opaqueness.While tissue optical clearing methods have emerged as powerful tools for investigating whole-mount tissues in 3D,they often have limitations,such as being too harsh for fragile 3D cell cultures,requiring complex handling protocols,or inducing tissue deformation with shrinkage or expansion.To address this issue,we proposed a modified optical clearing method for 3D cell cultures,called MACS-W,which is simple,highly efficient,and morphology-preserving.In our evaluation of MACS-W,we found that it exhibits excellent clearing capability in just 10 min,with minimal deformation,and helps drug evaluation on tumor spheroids.In summary,MACS-W is a fast,minimally-deformative and fluorescence compatible clearing method that has the potential to be widely used in the studies of 3D cell cultures.
基金supported by the National Natural Science Foundation of China(62375144 and 61875092)Tianjin Foundation of Natural Science(21JCYBJC00260)Beijing-Tianjin-Hebei Basic Research Cooperation Special Program(19JCZDJC65300).
文摘Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness.
基金supported financially by grants from the National Natural Science Foundation of China(No.81771793).
文摘Objective This study aimed to develop and test a model for predicting dysthyroid optic neuropathy(DON)based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid(CSF)in the optic nerve sheath.Methods This retrospective study included patients with thyroid-associated ophthalmopathy(TAO)without DON and patients with TAO accompanied by DON at our hospital.The imaging markers of the optic nerve and CSF in the optic nerve sheath were measured on the water-fat images of each patient and,together with clinical factors,were screened by Least absolute shrinkage and selection operator.Subsequently,we constructed a prediction model using multivariate logistic regression.The accuracy of the model was verified using receiver operating characteristic curve analysis.Results In total,80 orbits from 44 DON patients and 90 orbits from 45 TAO patients were included in our study.Two variables(optic nerve subarachnoid space and the volume of the CSF in the optic nerve sheath)were found to be independent predictive factors and were included in the prediction model.In the development cohort,the mean area under the curve(AUC)was 0.994,with a sensitivity of 0.944,specificity of 0.967,and accuracy of 0.901.Moreover,in the validation cohort,the AUC was 0.960,the sensitivity was 0.889,the specificity was 0.893,and the accuracy was 0.890.Conclusions A combined model was developed using imaging data of the optic nerve and CSF in the optic nerve sheath,serving as a noninvasive potential tool to predict DON.
基金supported by the National Natural Science Foundation of China under Grant No.62075235,National Key R&D Program of China under Grant No.2021YFF0700700Gusu Innovation and Entrepreneurship Leading Talents in Suzhou City under Grant No.ZXL2021425+1 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant No.2019320Innovation of Scientific Research Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No.XDA15021304.
文摘The parafoveal area,with its high concentration of photoreceptors andfine retinal capillaries,is crucial for central vision and often exhibits early signs of pathological changes.The current adaptive optics scanning laser ophthalmoscope(AOSLO)provides an excellent tool to acquire accurate and detailed information about the parafoveal area with cellular resolution.However,limited by the scanning speed of two-dimensional scanning,thefield of view(FOV)in the AOSLO system was usually less than or equal to 2,and the stitching for the parafoveal area required dozens of images,which was time-consuming and laborious.Unfortunately,almost half of patients are unable to obtain stitched images because of their poorfixation.To solve this problem,we integrate AO technology with the line-scan imaging method to build an adaptive optics line scanning ophthalmoscope(AOLSO)system with a larger FOV.In the AOLSO,afocal spherical mirrors in pairs are nonplanar arranged and the distance and angle between optical elements are optimized to minimize the aberrations,two cylinder lenses are orthogonally placed before the imaging sensor to stretch the point spread function(PSF)for sufficiently digitizing light energy.Captured human retinal images show the whole parafoveal area with 55FOV,60 Hz frame rate and cellular resolutions.Take advantage of the 5FOV of the AOLSO,only 9 frames of the retina are captured with several minutes to stitch a montage image with an FOV of 99,in which photoreceptor counting is performed within approximately 5eccentricity.The AOLSO system not only provides cellular resolution but also has the capability to capture the parafoveal region in a single frame,which offers great potential for noninvasive studying of the parafoveal area.
基金support from the National Research Foundation (NRF) Singapore, under its Competitive Research Programme Award NRF-CRP20-20170004 and NRF Investigatorship Award NRF-NRFI06-20200005MTC Programmatic Grant M21J9b0085, as well as the Lite-On Project RS-INDUS-00090+5 种基金support from Australian Research Council (DE220101085, DP220102152)grants from German Research Foundation (SCHM2655/15-1, SCHM2655/21-1)Lee-Lucas Chair in Physics and funding by the Australian Research Council DP220102152financial support from the National Natural Science Foundation of China (Grant No. 62275078)Natural Science Foundation of Hunan Province of China (Grant No. 2022JJ20020)Shenzhen Science and Technology Program (Grant No. JCYJ20220530160405013)
文摘Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.
文摘To verify the effectiveness of digital optical 3D image analyzer EvaSKIN in the objective and quantitative evaluation of wrinkles.A total of 115 subjects were recruited,the facial images of the subjects were collected by digital optical 3D image analyzer and manual camera,the changes of crow’s feet with age were analyzed.Pictures obtained by manual photography can be directly used for observation and preliminary grading of wrinkles.However,the requirements for evaluators are high,and the results are prone to errors,which will affect the accuracy of the evaluation.Therefore,skilled raters are needed.Compared with the manual photography method,the digital optical 3D image analyzer EvaSKIN can realize three-dimensional extraction of wrinkles,and obtain the change trend of crow’s feet with age.20~30 years old,wrinkles begin to appear slowly;wrinkles will increase rapidly at the age of 30~50;The length of 50~60 year old wrinkles is basically fixed,the wrinkles develop longitudewise,gradually widen and deepen,and the area,depth and volume increase is obvious,and the skin aging condition is intensified.the digital optical 3D image analyzer EvaSKIN realizes the 3D extraction of wrinkles,quantifies the circumference,area,average depth,maximum depth and volume of wrinkles,realizes the objective and quantitative evaluation of wrinkle state,is more accurate in the measurement of wrinkles,and provides a new instrument and method for the evaluation of wrinkles.it is a perfect and supplement to the traditional evaluation methods,and to a certain extent,it helps the research and development and evaluation institutions of cosmetics to obtain more abundant and three-dimensional data support.
基金supported by the National Natural Science Foundation of China(Grant Nos.52075383 and 61927808).
文摘Microspheres can break the diffraction limit and magnify nano-structure imaging,and with its advantages of low cost and label-free operation,microsphere-assisted imaging has become an irreplaceable tool in the life sciences and for precision measurements.However,the tiny size and limited imaging field of traditional solid microspheres cause difficulties when imaging large sample areas.Alternatively,droplets have similar properties to those of microspheres,with large surface curvature and refractive-index difference from the surrounding environment,and they can also serve as lenses to focus light for observation and imaging.Previous work has shown that droplets with controllable size can be generated using an optical tweezer system and can be driven by optical traps to move precisely like solid microspheres.Here,a novel microdroplet-assisted imaging technology based on optical tweezers is proposed that better integrates the generation,manipulation,and utilization of droplets.
基金supported by National Natural Foundation of China(Grant No.61991454)the project of CAS Interdisciplinary Innovation Team。
文摘High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional long baseline amplitude interferometry is susceptible to uncontrollable phase fluctuations,and the technical difficulty increases rapidly as the wavelength decreases.The intensity interferometry inspired by HBT experiment is essentially insensitive to phase fluctuations,but suffers from a narrow spectral bandwidth which results in a lack of effective photons.In this study,we propose optical synthetic aperture imaging based on spatial intensity interferometry.This not only realizes diffraction-limited optical aperture synthesis in a single shot,but also enables imaging with a wide spectral bandwidth,which greatly improves the optical energy efficiency of intensity interferometry.And this method is insensitive to the optical path difference between the sub-apertures.Simulations and experiments present optical aperture synthesis diffraction-limited imaging through spatial intensity interferometry in a 100 nm spectral width of visible light,whose maximum optical path difference between the sub-apertures reaches 69λ.This technique is expected to provide a solution for optical aperture synthesis over kilometer-long baselines at optical wavelengths.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61871234 and 62001249)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX200729)+3 种基金the Natural Science Research Project of Higher Education of Jiangsu Province(Grant No.20KJB510030)the Qing Lan Project of Jiangsu Province(Su Teacher’s Letter[2022]No.29)the Research project of NanJing Tech University Pujiang Institute(Grant No.njpj2022-1-25)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘An optical encryption(OE) scheme based on the spread spectrum ghost imaging(SSGI), named as SSGI-OE, is proposed to obtain a high security with a smaller key. In the scheme, the randomly selected row number of a Hadamard matrix of order N is used as the secure key, and shared with the authorized user, Bob, through a private channel. Each corresponding row vector of the order-N Hadamard matrix is then used as the direct sequence code to modulate a speckle pattern for the ghost imaging system, and an image is encrypted with the help of the SSGI. The measurement results from the bucket detector, named as ciphertext, are then transmitted to Bob through a public channel. The illuminating speckle patterns are also shared with Bob by the public channel. With the correct secure key, Bob could reconstruct the image with the aid of the SSGI system, whereas the unauthorized user, Eve, could not obtain any useful information of the encrypted image. The numerical simulations and experimental results show that the proposed scheme is feasible with a higher security and a smaller key. For the 32 × 32 pixels image, the number of bits sent from Alice to Bob by using SSGIOE(M = 1024, N = 2048) scheme is only 0.0107 times over a computational ghost imaging optical encryption scheme.When the eavesdropping ratio(ER) is less than 40%, the eavesdropper cannot acquire any information of the encrypted image. The extreme circumstance for the proposed SSGI-OE scheme is also discussed, where the eavesdropper begins to extract the information when ER is up to 15%.
基金Project supported by the National Key R&D Program of China(Grant No.SKLA02020001A05)。
文摘Real-time polarization medium-wave infrared(MIR)optical imaging systems enable the acquisition of infrared and polarization information for a target.At present,real-time polarization MIR devices face the following problems:poor real-time performance,low transmission and high requirements for fabrication and integration.Herein,we aim to improve the performance of real-time polarization imaging systems in the MIR waveband and solve the above-mentioned defects.Therefore,we propose a MIR polarization imaging system to achieve real-time polarization-modulated imaging with high transmission as well as improved performance based on a pixel-wise metasurface micro-polarization array(PMMPA).The PMMPA element comprises several linear polarization(LP)filters with different polarization angles.The optimization results demonstrate that the transmittance of the center field of view for the LP filters is up to 77%at a wavelength of4.0μm and an extinction ratio of 88 d B.In addition,a near-diffraction-limited real-time MIR imaging optical system is designed with a field of view of 5°and an F-number of 2.The simulation results show that an MIR polarization imaging system with excellent real-time performance and high transmission is achieved by using the optimized PMMPA element.Therefore,the method is compatible with the available optical system design technologies and provides a way to realize real-time polarization imaging in MIR wavebands.
文摘Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent computing, subverting the imaging mechanism of traditional optical imaging which only relies on orderly information transmission. To meet the high-precision requirements of traditional optical imaging for optical processing and adjustment, as well as to solve its problems of being sensitive to gravity and temperature in use, we establish an optical imaging system model from the perspective of computational optical imaging and studies how to design and solve the imaging consistency problem of optical system under the influence of gravity, thermal effect, stress, and other external environment to build a high robustness optical system. The results show that the high robustness interval of the optical system exists and can effectively reduce the sensitivity of the optical system to the disturbance of each link, thus realizing the high robustness of optical imaging.
基金supported by the National Science and Technology Innovation 2030 Grant No. (2021ZD0200104)National Nature Science Foundation of China (81871082).
文摘Cells are the basic unit of human organs that are not fully understood.The revolutionary advancements of optical imaging alowed us to observe single cells in whole organs,revealing the complicated composition of cells with spatial information.Therefore,in this review,we revisit the principles of optical contrast related to those biomolecules and the optical techniques that transform optical contrast into detectable optical signals.Then,we describe optical imaging to achieve threedimensional spatial discrimination for biological tisutes.Due to the milky appearance of tissues,the spatial information burred deep in the whole organ.Fortunately,strategies developed in the last decade could circumvent this issue and lead us into a new era of investigation of the cells with their original spatial information.
基金Supported by National Natural Science Foundation of China(No.81300805)。
文摘AIM:To characterize spectral-domain optical coherence tomography(SD-OCT)features of chorioretinal folds in orbital mass imaged using enhanced depth imaging(EDI).METHODS:Prospective observational case-control study was conducted in 20 eyes of 20 patients,the uninvolved eye served as a control.All the patients underwent clinical fundus photography,computed tomography,EDI SDOCT imaging before and after surgery.Two patients with cavernous hemangiomas underwent intratumoral injection of bleomycin A5;the remaining patients underwent tumor excision.Patients were followed 1 to 14mo following surgery(average follow up,5.8mo).RESULTS:Visual acuity prior to surgery ranged from 20/20 to 20/200.Following surgery,5 patients’visual acuity remained unchanged while the remaining 15 patients had a mean letter improvement of 10(range 4 to 26 letters).Photoreceptor inner/outer segment defects were found in 10 of 15 patients prior to surgery.Following surgical excision,photoreceptor inner/outer segment defects fully resolved in 8 of these 10 patients.CONCLUSION:Persistence of photoreceptor inner/outer segment defects caused by compression of the globe by an orbital mass can be associated with reduced visual prognosis.Our findings suggest that photoreceptor inner/outer segment defects on EDI SD-OCT could be an indicator for immediate surgical excision of an orbital mass causing choroidal compression.
基金This study was reviewed and approved by the Institutional Review Board of National Institutes for Quantum Science and Technology,No.07-1064-28.No animals or animal-derived samples or patients or patient-derived samples were included in this study.
文摘BACKGROUND Radionuclides produce Cherenkov radiation(CR),which can potentially activate photosensitizers(PSs)in phototherapy.Several groups have studied Cherenkov energy transfer to PSs using optical imaging;however,cost-effectively identifying whether PSs are excited by radionuclide-derived CR and detecting fluorescence emission from excited PSs remain a challenge.Many laboratories face the need for expensive dedicated equipment.AIM To cost-effectively confirm whether PSs are excited by radionuclide-derived CR and distinguish fluorescence emission from excited PSs.METHODS The absorbance and fluorescence spectra of PSs were measured using a microplate reader and fluorescence spectrometer to examine the photo-physical properties of PSs.To mitigate the need for expensive dedicated equipment and achieve the aim of the study,we developed a method that utilizes a chargecoupled device optical imaging system and appropriate long-pass filters of different wavelengths(manual sequential application of long-pass filters of 515,580,645,700,750,and 800 nm).Tetrakis(4-carboxyphenyl)porphyrin(TCPP)was utilized as a model PS.Different doses of copper-64(^(64)CuCl_(2))(4,2,and 1 mCi)were used as CR-producing radionuclides.Imaging and data acquisition were performed 0.5 h after sample preparation.Differential image analysis was conducted by using ImageJ software(National Institutes of Health)to visually evaluate TCPP fluorescence.RESULTS The maximum absorbance of TCPP was at 390-430 nm,and the emission peak was at 670 nm.The CR and CRinduced TCPP emissions were observed using the optical imaging system and the high-transmittance long-pass filters described above.The emission spectra of TCPP with a peak in the 645-700 nm window were obtained by calculation and subtraction based on the serial signal intensity(total flux)difference between^(64)CuCl_(2)+TCPP and^(64)CuCl_(2).Moreover,the differential fluorescence images of TCPP were obtained by subtracting the^(64)CuCl_(2)image from the^(64)CuCl_(2)+TCPP image.The experimental results considering different^(64)CuCl_(2)doses showed a dosedependent trend.These results demonstrate that a bioluminescence imaging device coupled with different longpass filters and subtraction image processing can confirm the emission spectra and differential fluorescence images of CR-induced TCPP.CONCLUSION This simple method identifies the PS fluorescence emission generated by radionuclide-derived CR and can contribute to accelerating the development of Cherenkov energy transfer imaging and the discovery of new PSs.
基金supported by the National Key R&D Program of China(No.2020YFA0710700)the National Natural Science Foundation of China(Nos.51873201 and 82172071)+2 种基金Key Research and Development Program of Anhui Province(No.202104b11020025)the Fundamental Research Funds for the Central Universities(No.YD2060002015)the CAS Youth Interdisciplinary Team(No.JCTD-2021-08).
文摘In liver tumor surgery,the recognition of tumor margin and radical resection of microcancer focis have always been the crucial points to reduce postoperative recurrence of tumor.However,naked-eye inspection and palpation have limited effectiveness in identifying tumor boundaries,and traditional imaging techniques cannot consistently locate tumors in real time.As an intraoperative real-time navigation imaging method,NIRfluorescence imaging has been extensively studied for its simplicity,reliable safety,and superior sensitivity,and is expected to improve the accuracy of liver tumor surgery.In recent years,the research focus of NIRfluorescence has gradually shifted from the-rst near-infrared window(NIR-I,700–900 nm)to the second near-infrared window(NIR-II,1000–1700 nm).Fluorescence imaging in NIR-II reduces the scattering effect of deep tissue,providing a preferable detection depth and spatial resolution while signi-cantly eliminating liver autofluorescence background to clarify tumor margin.Developingfluorophores combined with tumor antibodies will further improve the precision offluorescence-guided surgical navigation.With the development of a bunch offluorophores with phototherapy ability,NIR-II can integrate tumor detection and treatment to explore a new therapeutic strategy for liver cancer.Here,we review the recent progress of NIR-IIfluorescence technology in liver tumor surgery and discuss its challenges and potential development direction.
基金supported by the National Natural Science Foundation of China (No.52394252)the Postdoctoral Fellowship Program of CPSF (No.GZC20232497)+2 种基金the Key Research and Development Program of Shandong Province,China (No.2021ZLGX04)the Shandong Postdoctoral Science Foundation (No.SDBX2023012)the Qingdao Postdoctoral Program Grant (No.QDBSH20230202009)。
文摘Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater target detection.Polarization imaging can reduce the influence of backscattered light and obtain high-quality images underwater.The optical flow shows the motion and structural information of the target.We use polarized optical flow to obtain the optical flow field and estimate the target motion.The experimental results of different targets under varying water turbidity levels illustrate that our method is realizable and robust.The precision is verified by comparing the results with the precise displacement data and calculating two error measures.The proposed method based on polarized optical flow can obtain accurate displacement information and a good recognition effect.Moving target segmentation based on the Otsu method further proves the superiority of the polarized optical flow under turbid water.This study is valuable for target detection and motion estimation in scattering environments.