期刊文献+
共找到515,652篇文章
< 1 2 250 >
每页显示 20 50 100
Application of virtual reality technology improves the functionality of brain networks in individuals experiencing pain
1
作者 Takahiko Nagamine 《World Journal of Clinical Cases》 SCIE 2025年第3期66-68,共3页
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u... Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field. 展开更多
关键词 Virtual reality PAIN ANXIETY Salience network Default mode network
下载PDF
Unlocking the future:Mitochondrial genes and neural networks in predicting ovarian cancer prognosis and immunotherapy response
2
作者 Zhi-Jian Tang Yuan-Ming Pan +2 位作者 Wei Li Rui-Qiong Ma Jian-Liu Wang 《World Journal of Clinical Oncology》 2025年第1期43-52,共10页
BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnose... BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies. 展开更多
关键词 Ovarian cancer MITOCHONDRIA PROGNOSIS IMMUNOTHERAPY Neural network
下载PDF
Unraveling the mechanism of action of Shangxia Liangji formula for treating insomnia:a metabolomics and network pharmacology approach
3
作者 Xia-Jie Quan Hao Liang +5 位作者 Yong-Hong Tang Li Jiang Xiong-Ying Ji Feng-Ying Zhang Ping Zhang Bo Ouyang 《Traditional Medicine Research》 2025年第2期16-29,共14页
Background:Insomnia is a prevalent clinical condition and Shangxia Liangji formula(SXLJF)is a well-established method of treatment.Nevertheless,the specific mechanism of action of SXLJF remains unclear.Methods:The mou... Background:Insomnia is a prevalent clinical condition and Shangxia Liangji formula(SXLJF)is a well-established method of treatment.Nevertheless,the specific mechanism of action of SXLJF remains unclear.Methods:The mouse model of insomnia was established by intraperitoneal injection of para-chlorophenylalanine.Forty-two mice were randomly divided into a negative control group,model group,SXLJF group(18.72 g/kg/day),and positive control group(diazepam,2 mg/kg)and treated with the corresponding drugs for 7 consecutive days.The open field test and pentobarbital-induced sleeping test were conducted.LC-MS-based untargeted metabolomics and network pharmacology were applied to explore the potential targets of SXLJF for treating insomnia.Finally,key targets were validated using RT-qPCR.Results:Behavioral tests demonstrated that SXLJF reduced the total distance,average velocity,central distance,and sleep latency,and prolonged sleep duration.Metabolomics and network pharmacology revealed potential targets,signaling pathways,metabolic pathways,and metabolites associated with the anti-insomnia effects of SXLJF.Specifically,tyrosine hydroxylase(TH)and tyrosine metabolism emerged as crucial metabolic pathways and targets,respectively.RT-qPCR results supported the role of TH in the mechanism of SXLJF in treating insomnia.Conclusion:In conclusion,TH and tyrosine metabolism may represent significant targets and pathways for SXLJF in treating insomnia. 展开更多
关键词 Shangxia Liangji formula INSOMNIA metabolomics network pharmacology tyrosine hydroxylase tyrosine metabolism
下载PDF
Resting-state brain network remodeling after different nerve reconstruction surgeries:a functional magnetic resonance imaging study in brachial plexus injury rats
4
作者 Yunting Xiang Xiangxin Xing +6 位作者 Xuyun Hua Yuwen Zhang Xin Xue Jiajia Wu Mouxiong Zheng He Wang Jianguang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1495-1504,共10页
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev... Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery. 展开更多
关键词 brain functional networks end-to-end nerve transfer end-to-side nerve transfer independent component analysis nerve repair peripheral plexus injury resting-state functional connectivity
下载PDF
一种基于语义的super-peer网络构建方法
5
作者 乔百友 王国仁 +1 位作者 邢云龙 王彩荣 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第1期61-64,共4页
针对分类层次语义空间,提出了一种基于语义的super-peer网络构建方法.该方法根据peer上数据的语义信息,动态地将peer聚簇成不同的语义簇,语义簇之间建立适当的语义路由关系.每个语义簇由一个super-peer节点和一组peer节点组成,仅负责回... 针对分类层次语义空间,提出了一种基于语义的super-peer网络构建方法.该方法根据peer上数据的语义信息,动态地将peer聚簇成不同的语义簇,语义簇之间建立适当的语义路由关系.每个语义簇由一个super-peer节点和一组peer节点组成,仅负责回答其语义子空间上的查询.查询首先根据其语义被路由到适合的语义簇中,然后被转发给包含结果的peer.实验结果表明,该方法在查找性能和开销之间取得了一个良好的平衡,具有较高的查找性能和较低的查找代价,提高了网络的可扩展性. 展开更多
关键词 super-peer 分类层次 语义查找 路由算法 语义簇
下载PDF
SSABC:a super-peer selection algorithm based on capacity
6
作者 赵生慧 钱宁 +1 位作者 吴国新 陈桂林 《Journal of Southeast University(English Edition)》 EI CAS 2008年第4期444-449,共6页
Combining the characteristics of peer-to-peer (P2P) and grid, a super-peer selection algorithm--SSABC is presented in the distributed network merging P2P and grid. The algorithm computes nodes capacities using their... Combining the characteristics of peer-to-peer (P2P) and grid, a super-peer selection algorithm--SSABC is presented in the distributed network merging P2P and grid. The algorithm computes nodes capacities using their resource properties provided by a grid monitoring and discovery system, such as available bandwidth, free CPU and idle memory, as well as the number of current connections and online time. when a new node joins the network and the super-peers are all saturated, it should select a new super-peer from the new node or joined nodes with the highest capacity. By theoretical analyses and simulation experiments, it is shown that super-peers selected by capacity can achieve higher query success rates and shorten the average hop count when compared with super-peers selected randomly, and they can also balance the network load when all super-peers are saturated. When the number of total nodes changes, the conclusion is still valid, which explains that the algorithm SSABC is feasible and stable. 展开更多
关键词 peer to peer (P2P) GRID super-peer capacity selection: random selection
下载PDF
基于Super-Peer架构的分布式入侵检测模型研究 被引量:1
7
作者 刘通 王泽兵 冯雁 《计算机工程与科学》 CSCD 2005年第8期10-12,19,共4页
随着大规模分布式入侵行为的日益增多,对分布式入侵检测系统的性能要求也越来越高。本文提出了一种基于Super-Peer架构并采用智能Agent技术的分布式入侵检测系统模型,将Super-Peer模型与分布式入侵检测系统有效地结合,克服了纯P2P模型... 随着大规模分布式入侵行为的日益增多,对分布式入侵检测系统的性能要求也越来越高。本文提出了一种基于Super-Peer架构并采用智能Agent技术的分布式入侵检测系统模型,将Super-Peer模型与分布式入侵检测系统有效地结合,克服了纯P2P模型可管理性差的缺点,提高了入侵检测系统的效率和协作检测能力,增强了系统的开放性,减少了层次化带来的瓶颈,从整体上提高了系统的性能。 展开更多
关键词 分布式入侵检测 super-peer 数据融合
下载PDF
基于DHT的Super-peer流媒体服务体系
8
作者 王阳 蒙应杰 +1 位作者 张秀娟 赵雅洁 《计算机工程与应用》 CSCD 北大核心 2006年第10期162-165,共4页
利用对等网络的优点,提出了一种基于分布式哈希表算法的Super-peer流媒体服务的体系构架,讨论了该体系构架的组织、设计以及实现中的几个关键问题,并分析了该结构的特性。
关键词 对等网络 分布式哈希表 super-peer 流媒体
下载PDF
基于JXTA的Super-peer搜索方法设计
9
作者 李歆海 李善平 《计算机科学》 CSCD 北大核心 2003年第6期10-12,30,共4页
Efficient resource search method has significant impact on the scalability and availability of P2P network. Generally there are two search methods, pure Peer-to-Peer method and central index method. Recently, some sea... Efficient resource search method has significant impact on the scalability and availability of P2P network. Generally there are two search methods, pure Peer-to-Peer method and central index method. Recently, some search methods with super-peer concept are appearing, which are the compromise of those two methods and have favorable scalability and avafiability. In this paper, we compare the advantage and deficiency of these three kinds of search methods, and based on JXTA platform design the super-peer search method. 展开更多
关键词 网络带宽 网络连接 索引服务器 JXTA super-peer搜索方法 计算机网络
下载PDF
Super-proximity routing in structured peer-to-peer overlay networks 被引量:1
10
作者 吴增德 饶卫雄 马范援 《Journal of Zhejiang University Science》 EI CSCD 2004年第1期16-21,共6页
Peer to Peer systems are emerging as one of the most popular Internet applications. Structured Peer to Peer overlay networks use identifier based routing algorithms to allow robustness, load balancing, and distrib... Peer to Peer systems are emerging as one of the most popular Internet applications. Structured Peer to Peer overlay networks use identifier based routing algorithms to allow robustness, load balancing, and distributed lookup needed in this environment. However, identifier based routing that is independent of Internet topology tends to be of low efficiency. Aimed at improving the routing efficiency, the super proximity routing algorithms presented in this paper combine Internet topology and overlay routing table in choosing the next hop. Experimental results showed that the algorithms greatly improve the efficiency of Peer to Peer routing. 展开更多
关键词 ROUTING Peer to Peer network Distributed systems INTERNET
下载PDF
Pluggable multitask diffractive neural networks based on cascaded metasurfaces 被引量:4
11
作者 Cong He Dan Zhao +8 位作者 Fei Fan Hongqiang Zhou Xin Li Yao Li Junjie Li Fei Dong Yin-Xiao Miao Yongtian Wang Lingling Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c... Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems. 展开更多
关键词 optical neural networks diffractive deep neural networks cascaded metasurfaces
下载PDF
Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning 被引量:5
12
作者 Xiaolu Li Ye Yang +3 位作者 Senming Xu Yuchang Gui Jianmin Chen Jianwen Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2723-2734,共12页
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s... Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022). 展开更多
关键词 bioinformatics analysis BIOMARKER CIBERSORT GEO dataset LASSO miRNA-mRNA network RNA sequencing spinal cord injury SVM-RFE weighted gene co-expression network analysis
下载PDF
Social-ecological perspective on the suicidal behaviour factors of early adolescents in China:a network analysis 被引量:4
13
作者 Yuan Li Peiying Li +5 位作者 Mengyuan Yuan Yonghan Li Xueying Zhang Juan Chen Gengfu Wang Puyu Su 《General Psychiatry》 CSCD 2024年第1期143-150,共8页
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl... Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts. 展开更多
关键词 network ANALYSIS PREVENTION
下载PDF
Image super‐resolution via dynamic network 被引量:1
14
作者 Chunwei Tian Xuanyu Zhang +2 位作者 Qi Zhang Mingming Yang Zhaojie Ju 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期837-849,共13页
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp... Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet. 展开更多
关键词 CNN dynamic network image super‐resolution lightweight network
下载PDF
Mapping Network-Coordinated Stacked Gated Recurrent Units for Turbulence Prediction 被引量:1
15
作者 Zhiming Zhang Shangce Gao +2 位作者 MengChu Zhou Mengtao Yan Shuyang Cao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1331-1341,共11页
Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i... Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU. 展开更多
关键词 Convolutional neural network deep learning recurrent neural network turbulence prediction wind load predic-tion.
下载PDF
Applying an Improved Dung Beetle Optimizer Algorithm to Network Traffic Identification 被引量:1
16
作者 Qinyue Wu Hui Xu Mengran Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期4091-4107,共17页
Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexi... Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification. 展开更多
关键词 network security network traffic identification data analytics feature selection dung beetle optimizer
下载PDF
Computing Power Network:A Survey 被引量:1
17
作者 Sun Yukun Lei Bo +4 位作者 Liu Junlin Huang Haonan Zhang Xing Peng Jing Wang Wenbo 《China Communications》 SCIE CSCD 2024年第9期109-145,共37页
With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these... With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well. 展开更多
关键词 computing power modeling computing power network computing power scheduling information awareness network forwarding
下载PDF
IDS-INT:Intrusion detection system using transformer-based transfer learning for imbalanced network traffic 被引量:3
18
作者 Farhan Ullah Shamsher Ullah +1 位作者 Gautam Srivastava Jerry Chun-Wei Lin 《Digital Communications and Networks》 SCIE CSCD 2024年第1期190-204,共15页
A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a... A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model. 展开更多
关键词 network intrusion detection Transfer learning Features extraction Imbalance data Explainable AI CYBERSECURITY
下载PDF
Activation Redistribution Based Hybrid Asymmetric Quantization Method of Neural Networks 被引量:1
19
作者 Lu Wei Zhong Ma Chaojie Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期981-1000,共20页
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd... The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization. 展开更多
关键词 QUANTIZATION neural network hybrid asymmetric ACCURACY
下载PDF
Insights into microbiota community dynamics and flavor development mechanism during golden pomfret(Trachinotus ovatus)fermentation based on single-molecule real-time sequencing and molecular networking analysis 被引量:2
20
作者 Yueqi Wang Qian Chen +5 位作者 Huan Xiang Dongxiao Sun-Waterhouse Shengjun Chen Yongqiang Zhao Laihao Li Yanyan Wu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期101-114,共14页
Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the ... Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products. 展开更多
关键词 Fermented golden pomfret Microbiota community Volatile compound Co-occurrence network Metabolic pathway
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部