The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution(SISR)research.However,the high computational demands of most SR techniques hinder ...The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution(SISR)research.However,the high computational demands of most SR techniques hinder their applicability to edge devices,despite their satisfactory reconstruction performance.These methods commonly use standard convolutions,which increase the convolutional operation cost of the model.In this paper,a lightweight Partial Separation and Multiscale Fusion Network(PSMFNet)is proposed to alleviate this problem.Specifically,this paper introduces partial convolution(PConv),which reduces the redundant convolution operations throughout the model by separating some of the features of an image while retaining features useful for image reconstruction.Additionally,it is worth noting that the existing methods have not fully utilized the rich feature information,leading to information loss,which reduces the ability to learn feature representations.Inspired by self-attention,this paper develops a multiscale feature fusion block(MFFB),which can better utilize the non-local features of an image.MFFB can learn long-range dependencies from the spatial dimension and extract features from the channel dimension,thereby obtaining more comprehensive and rich feature information.As the role of the MFFB is to capture rich global features,this paper further introduces an efficient inverted residual block(EIRB)to supplement the local feature extraction ability of PSMFNet.A comprehensive analysis of the experimental results shows that PSMFNet maintains a better performance with fewer parameters than the state-of-the-art models.展开更多
Single Image Super-Resolution(SISR)technology aims to reconstruct a clear,high-resolution image with more information from an input low-resolution image that is blurry and contains less information.This technology has...Single Image Super-Resolution(SISR)technology aims to reconstruct a clear,high-resolution image with more information from an input low-resolution image that is blurry and contains less information.This technology has significant research value and is widely used in fields such as medical imaging,satellite image processing,and security surveillance.Despite significant progress in existing research,challenges remain in reconstructing clear and complex texture details,with issues such as edge blurring and artifacts still present.The visual perception effect still needs further enhancement.Therefore,this study proposes a Pyramid Separable Channel Attention Network(PSCAN)for the SISR task.Thismethod designs a convolutional backbone network composed of Pyramid Separable Channel Attention blocks to effectively extract and fuse multi-scale features.This expands the model’s receptive field,reduces resolution loss,and enhances the model’s ability to reconstruct texture details.Additionally,an innovative artifact loss function is designed to better distinguish between artifacts and real edge details,reducing artifacts in the reconstructed images.We conducted comprehensive ablation and comparative experiments on the Arabidopsis root image dataset and several public datasets.The experimental results show that the proposed PSCAN method achieves the best-known performance in both subjective visual effects and objective evaluation metrics,with improvements of 0.84 in Peak Signal-to-Noise Ratio(PSNR)and 0.017 in Structural Similarity Index(SSIM).This demonstrates that the method can effectively preserve high-frequency texture details,reduce artifacts,and have good generalization performance.展开更多
Digital in-line holographic microscopy(DIHM)is a widely used interference technique for real-time reconstruction of living cells’morphological information with large space-bandwidth product and compact setup.However,...Digital in-line holographic microscopy(DIHM)is a widely used interference technique for real-time reconstruction of living cells’morphological information with large space-bandwidth product and compact setup.However,the need for a larger pixel size of detector to improve imaging photosensitivity,field-of-view,and signal-to-noise ratio often leads to the loss of sub-pixel information and limited pixel resolution.Additionally,the twin-image appearing in the reconstruction severely degrades the quality of the reconstructed image.The deep learning(DL)approach has emerged as a powerful tool for phase retrieval in DIHM,effectively addressing these challenges.However,most DL-based strategies are datadriven or end-to-end net approaches,suffering from excessive data dependency and limited generalization ability.Herein,a novel multi-prior physics-enhanced neural network with pixel super-resolution(MPPN-PSR)for phase retrieval of DIHM is proposed.It encapsulates the physical model prior,sparsity prior and deep image prior in an untrained deep neural network.The effectiveness and feasibility of MPPN-PSR are demonstrated by comparing it with other traditional and learning-based phase retrieval methods.With the capabilities of pixel super-resolution,twin-image elimination and high-throughput jointly from a single-shot intensity measurement,the proposed DIHM approach is expected to be widely adopted in biomedical workflow and industrial measurement.展开更多
Aiming at the problems such as low reconstruction efficiency,fuzzy texture details,and difficult convergence of reconstruction network face image super-resolution reconstruction algorithms,a new super-resolution recon...Aiming at the problems such as low reconstruction efficiency,fuzzy texture details,and difficult convergence of reconstruction network face image super-resolution reconstruction algorithms,a new super-resolution reconstruction algorithm with residual concern was proposed.Firstly,to solve the influence of redundant and invalid information about the face image super-resolution reconstruction network,an attention mechanism was introduced into the feature extraction module of the network,which improved the feature utilization rate of the overall network.Secondly,to alleviate the problem of gradient disappearance,the adaptive residual was introduced into the network to make the network model easier to converge during training,and features were supplemented according to the needs during training.The experimental results showed that the proposed algorithm had better reconstruction performance,more facial details,and clearer texture in the reconstructed face image than the comparison algorithm.In objective evaluation,the proposed algorithm's peak signalto-noise ratio and structural similarity were also better than other algorithms.展开更多
In order to solve the problem of the lack of ornamental value and research value of ancient mural paintings due to low resolution and fuzzy texture details,a super resolution(SR)method based on generative adduction ne...In order to solve the problem of the lack of ornamental value and research value of ancient mural paintings due to low resolution and fuzzy texture details,a super resolution(SR)method based on generative adduction network(GAN)was proposed.This method reconstructed the detail texture of mural image better.Firstly,in view of the insufficient utilization of shallow image features,information distillation blocks(IDB)were introduced to extract shallow image features and enhance the output results of the network behind.Secondly,residual dense blocks with residual scaling and feature fusion(RRDB-Fs)were used to extract deep image features,which removed the BN layer in the residual block that affected the quality of image generation,and improved the training speed of the network.Furthermore,local feature fusion and global feature fusion were applied in the generation network,and the features of different levels were merged together adaptively,so that the reconstructed image contained rich details.Finally,in calculating the perceptual loss,the brightness consistency between the reconstructed fresco and the original fresco was enhanced by using the features before activation,while avoiding artificial interference.The experimental results showed that the peak signal-to-noise ratio and structural similarity metrics were improved compared with other algorithms,with an improvement of 0.512 dB-3.016 dB in peak signal-to-noise ratio and 0.009-0.089 in structural similarity,and the proposed method had better visual effects.展开更多
Considering that there is no single full reference image quality assessment method that could give the best performance in all situations, some multi-method fusion metrics were proposed. Machine learning techniques ar...Considering that there is no single full reference image quality assessment method that could give the best performance in all situations, some multi-method fusion metrics were proposed. Machine learning techniques are often involved in such multi-method fusion metrics so that its output would be more consistent with human visual perceptions. On the other hand, the robustness and generalization ability of these multi-method fusion metrics are questioned because of the scarce of images with mean opinion scores. In order to comprehensively validate whether or not the generalization ability of such multi-method fusion IQA metrics are satisfying, we construct a new image database which contains up to 60 reference images. The newly built image database is then used to test the generalization ability of different multi-method fusion IQA metrics. Cross database validation experiment indicates that in our new image database, the performances of all the multi-method fusion IQA metrics have no statistical significant different with some single-method IQA metrics such as FSIM and MAD. In the end, a thorough analysis is given to explain why the performance of multi-method fusion IQA framework drop significantly in cross database validation.展开更多
Hyperspectral image super-resolution,which refers to reconstructing the high-resolution hyperspectral image from the input low-resolution observation,aims to improve the spatial resolution of the hyperspectral image,w...Hyperspectral image super-resolution,which refers to reconstructing the high-resolution hyperspectral image from the input low-resolution observation,aims to improve the spatial resolution of the hyperspectral image,which is beneficial for subsequent applications.The development of deep learning has promoted significant progress in hyperspectral image super-resolution,and the powerful expression capabilities of deep neural networks make the predicted results more reliable.Recently,several latest deep learning technologies have made the hyperspectral image super-resolution method explode.However,a comprehensive review and analysis of the latest deep learning methods from the hyperspectral image super-resolution perspective is absent.To this end,in this survey,we first introduce the concept of hyperspectral image super-resolution and classify the methods from the perspectives with or without auxiliary information.Then,we review the learning-based methods in three categories,including single hyperspectral image super-resolution,panchromatic-based hyperspectral image super-resolution,and multispectral-based hyperspectral image super-resolution.Subsequently,we summarize the commonly used hyperspectral dataset,and the evaluations for some representative methods in three categories are performed qualitatively and quantitatively.Moreover,we briefly introduce several typical applications of hyperspectral image super-resolution,including ground object classification,urban change detection,and ecosystem monitoring.Finally,we provide the conclusion and challenges in existing learning-based methods,looking forward to potential future research directions.展开更多
A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. F...A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.展开更多
Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have ...Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have emerged.Compared to some traditional SISR methods,deep learning-based methods can complete the super-resolution tasks through a single image.In addition,compared with the SISR methods using traditional convolutional neural networks,SISR based on generative adversarial networks(GAN)has achieved the most advanced visual performance.In this review,we first explore the challenges faced by SISR and introduce some common datasets and evaluation metrics.Then,we review the improved network structures and loss functions of GAN-based perceptual SISR.Subsequently,the advantages and disadvantages of different networks are analyzed by multiple comparative experiments.Finally,we summarize the paper and look forward to the future development trends of GAN-based perceptual SISR.展开更多
Color image super-resolution reconstruction based on the sparse representation model usually adopts the regularization norm(e.g.,L1 or L2).These methods have limited ability to keep image texture detail to some extent...Color image super-resolution reconstruction based on the sparse representation model usually adopts the regularization norm(e.g.,L1 or L2).These methods have limited ability to keep image texture detail to some extent and are easy to cause the problem of blurring details and color artifacts in color reconstructed images.This paper presents a color super-resolution reconstruction method combining the L2/3 sparse regularization model with color channel constraints.The method converts the low-resolution color image from RGB to YCbCr.The L2/3 sparse regularization model is designed to reconstruct the brightness channel of the input low-resolution color image.Then the color channel-constraint method is adopted to remove artifacts of the reconstructed highresolution image.The method not only ensures the reconstruction quality of the color image details,but also improves the removal ability of color artifacts.The experimental results on natural images validate that our method has improved both subjective and objective evaluation.展开更多
In order to store and manage a large amount of ground and indoor image data with high resolution, an integrated data management system needs to be developed. Possible strategies for this purpose were discussed togethe...In order to store and manage a large amount of ground and indoor image data with high resolution, an integrated data management system needs to be developed. Possible strategies for this purpose were discussed together with initial test on the newly defined 3D maps. The features of such 3D maps, data organization, key techniques used for the map storage, such as image compression based on wavelet transformation, quadtree index, update and retrieval, were analyzed, with the goals of bringing some profits to the storage and management of the digital data in the visual construction of digital mine, digital city and digital community.展开更多
Although there has been a great breakthrough in the accuracy and speed of super-resolution(SR)reconstruction of a single image by using a convolutional neural network,an important problem remains unresolved:how to res...Although there has been a great breakthrough in the accuracy and speed of super-resolution(SR)reconstruction of a single image by using a convolutional neural network,an important problem remains unresolved:how to restore finer texture details during image super-resolution reconstruction?This paper proposes an Enhanced Laplacian Pyramid Generative Adversarial Network(ELSRGAN),based on the Laplacian pyramid to capture the high-frequency details of the image.By combining Laplacian pyramids and generative adversarial networks,progressive reconstruction of super-resolution images can be made,making model applications more flexible.In order to solve the problem of gradient disappearance,we introduce the Residual-in-Residual Dense Block(RRDB)as the basic network unit.Network capacity benefits more from dense connections,is able to capture more visual features with better reconstruction effects,and removes BN layers to increase calculation speed and reduce calculation complexity.In addition,a loss of content driven by perceived similarity is used instead of content loss driven by spatial similarity,thereby enhancing the visual effect of the super-resolution image,making it more consistent with human visual perception.Extensive qualitative and quantitative evaluation of the baseline datasets shows that the proposed algorithm has higher mean-sort-score(MSS)than any state-of-the-art method and has better visual perception.展开更多
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif...Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.展开更多
This paper designs a 3 mm radiometer and validate with experiments based on the principle of passive millimeter wave (PMMW) imaging. The poor spatial resolution, which is limited by antenna size, should be improved ...This paper designs a 3 mm radiometer and validate with experiments based on the principle of passive millimeter wave (PMMW) imaging. The poor spatial resolution, which is limited by antenna size, should be improved by post data processing. A conjugate-gradient (CG) algorithm is adopted to circumvent this drawback. Simulation and real data collected in laboratory environment are given, and the results show that the CG algorithm improves the spatial resolution and convergent rate. Further, it can reduce the ringing effects which are caused by regularizing the image restoration. Thus, the CG algorithm is easily implemented for PMMW imaging.展开更多
To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image applicat...To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image application firstly, and then the algorithm adopted for feature extraction and multidimensional indexing, and relevance feedback by this model are analyzed in detail. Finally, the contents intending to be researched about this model are proposed.展开更多
A super-resolution reconstruction algorithm is proposed. The algorithm is based on the idea of the sparse representation of signals, by using the fact that the sparsest representation of a sig- nal is unique as the co...A super-resolution reconstruction algorithm is proposed. The algorithm is based on the idea of the sparse representation of signals, by using the fact that the sparsest representation of a sig- nal is unique as the constraint of the patched-based reconstruction, and compensating residual errors of the reconstruction results both locally and globally to solve the distortion problem in patch-based reconstruction algorithms. Three reconstruction algorithms are compared. The results show that the images reconstructed with the new algorithm have the best quality.展开更多
Passive millimeter wave (PMMW) images inherently have the problem of poor resolution owing to limited aperture dimension. Thus, efficient post-processing is necessary to achieve resolution improvement. An adaptive p...Passive millimeter wave (PMMW) images inherently have the problem of poor resolution owing to limited aperture dimension. Thus, efficient post-processing is necessary to achieve resolution improvement. An adaptive projected Landweber (APL) super-resolution algorithm using a spectral correction procedure, which attempts to combine the strong points of all of the projected Landweber (PL) iteration and the adaptive relaxation parameter adjustment and the spectral correction method, is proposed. In the algorithm, the PL iterations are implemented as the main image restoration scheme and a spectral correction method is included in which the calculated spectrum within the passband is replaced by the known low frequency component. Then, the algorithm updates the relaxation parameter adaptively at each iteration. A qualitative evaluation of this algorithm is performed with simulated data as well as actual radiometer image captured by 91.5 GHz mechanically scanned radiometer. From experiments, it is found that the super-resolution algorithm obtains better results and enhances the resolution and has lower mean square error (MSE). These constraints and adaptive character and spectral correction procedures speed up the convergence of the Landweber algorithm and reduce the ringing effects that are caused by regularizing the image restoration problem.展开更多
Medical image super-resolution is a fundamental challenge due to absorption and scattering in tissues.These challenges are increasing the interest in the quality of medical images.Recent research has proven that the r...Medical image super-resolution is a fundamental challenge due to absorption and scattering in tissues.These challenges are increasing the interest in the quality of medical images.Recent research has proven that the rapid progress in convolutional neural networks(CNNs)has achieved superior performance in the area of medical image super-resolution.However,the traditional CNN approaches use interpolation techniques as a preprocessing stage to enlarge low-resolution magnetic resonance(MR)images,adding extra noise in the models and more memory consumption.Furthermore,conventional deep CNN approaches used layers in series-wise connection to create the deeper mode,because this later end layer cannot receive complete information and work as a dead layer.In this paper,we propose Inception-ResNet-based Network for MRI Image Super-Resolution known as IRMRIS.In our proposed approach,a bicubic interpolation is replaced with a deconvolution layer to learn the upsampling filters.Furthermore,a residual skip connection with the Inception block is used to reconstruct a high-resolution output image from a low-quality input image.Quantitative and qualitative evaluations of the proposed method are supported through extensive experiments in reconstructing sharper and clean texture details as compared to the state-of-the-art methods.展开更多
Image super-resolution(SR)is an important technique for improving the resolution and quality of images.With the great progress of deep learning,image super-resolution achieves remarkable improvements recently.In this ...Image super-resolution(SR)is an important technique for improving the resolution and quality of images.With the great progress of deep learning,image super-resolution achieves remarkable improvements recently.In this work,a brief survey on recent advances of deep learning based single image super-resolution methods is systematically described.The existing studies of SR techniques are roughly grouped into ten major categories.Besides,some other important issues are also introduced,such as publicly available benchmark datasets and performance evaluation metrics.Finally,this survey is concluded by highlighting four future trends.展开更多
This paper discusses a pattern design system in textile industry,the establishment of an imagedatabase which is used to store various kinds of source materials for designers’ reference in order tospeed up design proc...This paper discusses a pattern design system in textile industry,the establishment of an imagedatabase which is used to store various kinds of source materials for designers’ reference in order tospeed up design process.Pattern design image database (PDIDB) runs on the double-machine hardware system com-posed of ALTOS-986 and IBM PC/XT microcomputer.The former (host) manages imagedatabase,and the latter works both as a terminal to operate PDIDB and as an image processingstation to input,output,edit and display image data.PDIDB has two mainparts,the image storage management system and the image attributemanagement system and provides some functions,such as retrieval,deleting and updating.展开更多
基金Guangdong Science and Technology Program under Grant No.202206010052Foshan Province R&D Key Project under Grant No.2020001006827Guangdong Academy of Sciences Integrated Industry Technology Innovation Center Action Special Project under Grant No.2022GDASZH-2022010108.
文摘The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution(SISR)research.However,the high computational demands of most SR techniques hinder their applicability to edge devices,despite their satisfactory reconstruction performance.These methods commonly use standard convolutions,which increase the convolutional operation cost of the model.In this paper,a lightweight Partial Separation and Multiscale Fusion Network(PSMFNet)is proposed to alleviate this problem.Specifically,this paper introduces partial convolution(PConv),which reduces the redundant convolution operations throughout the model by separating some of the features of an image while retaining features useful for image reconstruction.Additionally,it is worth noting that the existing methods have not fully utilized the rich feature information,leading to information loss,which reduces the ability to learn feature representations.Inspired by self-attention,this paper develops a multiscale feature fusion block(MFFB),which can better utilize the non-local features of an image.MFFB can learn long-range dependencies from the spatial dimension and extract features from the channel dimension,thereby obtaining more comprehensive and rich feature information.As the role of the MFFB is to capture rich global features,this paper further introduces an efficient inverted residual block(EIRB)to supplement the local feature extraction ability of PSMFNet.A comprehensive analysis of the experimental results shows that PSMFNet maintains a better performance with fewer parameters than the state-of-the-art models.
基金supported by Beijing Municipal Science and Technology Project(No.Z221100007122003).
文摘Single Image Super-Resolution(SISR)technology aims to reconstruct a clear,high-resolution image with more information from an input low-resolution image that is blurry and contains less information.This technology has significant research value and is widely used in fields such as medical imaging,satellite image processing,and security surveillance.Despite significant progress in existing research,challenges remain in reconstructing clear and complex texture details,with issues such as edge blurring and artifacts still present.The visual perception effect still needs further enhancement.Therefore,this study proposes a Pyramid Separable Channel Attention Network(PSCAN)for the SISR task.Thismethod designs a convolutional backbone network composed of Pyramid Separable Channel Attention blocks to effectively extract and fuse multi-scale features.This expands the model’s receptive field,reduces resolution loss,and enhances the model’s ability to reconstruct texture details.Additionally,an innovative artifact loss function is designed to better distinguish between artifacts and real edge details,reducing artifacts in the reconstructed images.We conducted comprehensive ablation and comparative experiments on the Arabidopsis root image dataset and several public datasets.The experimental results show that the proposed PSCAN method achieves the best-known performance in both subjective visual effects and objective evaluation metrics,with improvements of 0.84 in Peak Signal-to-Noise Ratio(PSNR)and 0.017 in Structural Similarity Index(SSIM).This demonstrates that the method can effectively preserve high-frequency texture details,reduce artifacts,and have good generalization performance.
基金National Natural Science Foundation of China (62275267, 62335018, 12127805, 62105359)National Key Research and Development Program of China (2021YFF0700303, 2022YFE0100700)Youth Innovation Promotion Association, CAS (2021401)
文摘Digital in-line holographic microscopy(DIHM)is a widely used interference technique for real-time reconstruction of living cells’morphological information with large space-bandwidth product and compact setup.However,the need for a larger pixel size of detector to improve imaging photosensitivity,field-of-view,and signal-to-noise ratio often leads to the loss of sub-pixel information and limited pixel resolution.Additionally,the twin-image appearing in the reconstruction severely degrades the quality of the reconstructed image.The deep learning(DL)approach has emerged as a powerful tool for phase retrieval in DIHM,effectively addressing these challenges.However,most DL-based strategies are datadriven or end-to-end net approaches,suffering from excessive data dependency and limited generalization ability.Herein,a novel multi-prior physics-enhanced neural network with pixel super-resolution(MPPN-PSR)for phase retrieval of DIHM is proposed.It encapsulates the physical model prior,sparsity prior and deep image prior in an untrained deep neural network.The effectiveness and feasibility of MPPN-PSR are demonstrated by comparing it with other traditional and learning-based phase retrieval methods.With the capabilities of pixel super-resolution,twin-image elimination and high-throughput jointly from a single-shot intensity measurement,the proposed DIHM approach is expected to be widely adopted in biomedical workflow and industrial measurement.
基金supported by National Natural Science Foundation of China(No.62063014)。
文摘Aiming at the problems such as low reconstruction efficiency,fuzzy texture details,and difficult convergence of reconstruction network face image super-resolution reconstruction algorithms,a new super-resolution reconstruction algorithm with residual concern was proposed.Firstly,to solve the influence of redundant and invalid information about the face image super-resolution reconstruction network,an attention mechanism was introduced into the feature extraction module of the network,which improved the feature utilization rate of the overall network.Secondly,to alleviate the problem of gradient disappearance,the adaptive residual was introduced into the network to make the network model easier to converge during training,and features were supplemented according to the needs during training.The experimental results showed that the proposed algorithm had better reconstruction performance,more facial details,and clearer texture in the reconstructed face image than the comparison algorithm.In objective evaluation,the proposed algorithm's peak signalto-noise ratio and structural similarity were also better than other algorithms.
文摘In order to solve the problem of the lack of ornamental value and research value of ancient mural paintings due to low resolution and fuzzy texture details,a super resolution(SR)method based on generative adduction network(GAN)was proposed.This method reconstructed the detail texture of mural image better.Firstly,in view of the insufficient utilization of shallow image features,information distillation blocks(IDB)were introduced to extract shallow image features and enhance the output results of the network behind.Secondly,residual dense blocks with residual scaling and feature fusion(RRDB-Fs)were used to extract deep image features,which removed the BN layer in the residual block that affected the quality of image generation,and improved the training speed of the network.Furthermore,local feature fusion and global feature fusion were applied in the generation network,and the features of different levels were merged together adaptively,so that the reconstructed image contained rich details.Finally,in calculating the perceptual loss,the brightness consistency between the reconstructed fresco and the original fresco was enhanced by using the features before activation,while avoiding artificial interference.The experimental results showed that the peak signal-to-noise ratio and structural similarity metrics were improved compared with other algorithms,with an improvement of 0.512 dB-3.016 dB in peak signal-to-noise ratio and 0.009-0.089 in structural similarity,and the proposed method had better visual effects.
基金supported by “the Fundamental Research Funds for the Central Universities” No.2018CUCTJ081
文摘Considering that there is no single full reference image quality assessment method that could give the best performance in all situations, some multi-method fusion metrics were proposed. Machine learning techniques are often involved in such multi-method fusion metrics so that its output would be more consistent with human visual perceptions. On the other hand, the robustness and generalization ability of these multi-method fusion metrics are questioned because of the scarce of images with mean opinion scores. In order to comprehensively validate whether or not the generalization ability of such multi-method fusion IQA metrics are satisfying, we construct a new image database which contains up to 60 reference images. The newly built image database is then used to test the generalization ability of different multi-method fusion IQA metrics. Cross database validation experiment indicates that in our new image database, the performances of all the multi-method fusion IQA metrics have no statistical significant different with some single-method IQA metrics such as FSIM and MAD. In the end, a thorough analysis is given to explain why the performance of multi-method fusion IQA framework drop significantly in cross database validation.
基金supported in part by the National Natural Science Foundation of China(62276192)。
文摘Hyperspectral image super-resolution,which refers to reconstructing the high-resolution hyperspectral image from the input low-resolution observation,aims to improve the spatial resolution of the hyperspectral image,which is beneficial for subsequent applications.The development of deep learning has promoted significant progress in hyperspectral image super-resolution,and the powerful expression capabilities of deep neural networks make the predicted results more reliable.Recently,several latest deep learning technologies have made the hyperspectral image super-resolution method explode.However,a comprehensive review and analysis of the latest deep learning methods from the hyperspectral image super-resolution perspective is absent.To this end,in this survey,we first introduce the concept of hyperspectral image super-resolution and classify the methods from the perspectives with or without auxiliary information.Then,we review the learning-based methods in three categories,including single hyperspectral image super-resolution,panchromatic-based hyperspectral image super-resolution,and multispectral-based hyperspectral image super-resolution.Subsequently,we summarize the commonly used hyperspectral dataset,and the evaluations for some representative methods in three categories are performed qualitatively and quantitatively.Moreover,we briefly introduce several typical applications of hyperspectral image super-resolution,including ground object classification,urban change detection,and ecosystem monitoring.Finally,we provide the conclusion and challenges in existing learning-based methods,looking forward to potential future research directions.
基金Project(2008041001) supported by the Academician Foundation of China Project(N0601-041) supported by the General Armament Department Science Foundation of China
文摘A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.
基金The authors are highly thankful to the Development Research Center of Guangxi Relatively Sparse-populated Minorities(ID:GXRKJSZ201901)to the Natural Science Foundation of Guangxi Province(No.2018GXNSFAA281164)This research was financially supported by the project of outstanding thousand young teachers’training in higher education institutions of Guangxi,Guangxi Colleges and Universities Key Laboratory Breeding Base of System Control and Information Processing.
文摘Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have emerged.Compared to some traditional SISR methods,deep learning-based methods can complete the super-resolution tasks through a single image.In addition,compared with the SISR methods using traditional convolutional neural networks,SISR based on generative adversarial networks(GAN)has achieved the most advanced visual performance.In this review,we first explore the challenges faced by SISR and introduce some common datasets and evaluation metrics.Then,we review the improved network structures and loss functions of GAN-based perceptual SISR.Subsequently,the advantages and disadvantages of different networks are analyzed by multiple comparative experiments.Finally,we summarize the paper and look forward to the future development trends of GAN-based perceptual SISR.
基金supported by the National Natural Science Foundation of China(61761028)。
文摘Color image super-resolution reconstruction based on the sparse representation model usually adopts the regularization norm(e.g.,L1 or L2).These methods have limited ability to keep image texture detail to some extent and are easy to cause the problem of blurring details and color artifacts in color reconstructed images.This paper presents a color super-resolution reconstruction method combining the L2/3 sparse regularization model with color channel constraints.The method converts the low-resolution color image from RGB to YCbCr.The L2/3 sparse regularization model is designed to reconstruct the brightness channel of the input low-resolution color image.Then the color channel-constraint method is adopted to remove artifacts of the reconstructed highresolution image.The method not only ensures the reconstruction quality of the color image details,but also improves the removal ability of color artifacts.The experimental results on natural images validate that our method has improved both subjective and objective evaluation.
文摘In order to store and manage a large amount of ground and indoor image data with high resolution, an integrated data management system needs to be developed. Possible strategies for this purpose were discussed together with initial test on the newly defined 3D maps. The features of such 3D maps, data organization, key techniques used for the map storage, such as image compression based on wavelet transformation, quadtree index, update and retrieval, were analyzed, with the goals of bringing some profits to the storage and management of the digital data in the visual construction of digital mine, digital city and digital community.
基金This work was supported in part by the National Science Foundation of China under Grant 61572526.
文摘Although there has been a great breakthrough in the accuracy and speed of super-resolution(SR)reconstruction of a single image by using a convolutional neural network,an important problem remains unresolved:how to restore finer texture details during image super-resolution reconstruction?This paper proposes an Enhanced Laplacian Pyramid Generative Adversarial Network(ELSRGAN),based on the Laplacian pyramid to capture the high-frequency details of the image.By combining Laplacian pyramids and generative adversarial networks,progressive reconstruction of super-resolution images can be made,making model applications more flexible.In order to solve the problem of gradient disappearance,we introduce the Residual-in-Residual Dense Block(RRDB)as the basic network unit.Network capacity benefits more from dense connections,is able to capture more visual features with better reconstruction effects,and removes BN layers to increase calculation speed and reduce calculation complexity.In addition,a loss of content driven by perceived similarity is used instead of content loss driven by spatial similarity,thereby enhancing the visual effect of the super-resolution image,making it more consistent with human visual perception.Extensive qualitative and quantitative evaluation of the baseline datasets shows that the proposed algorithm has higher mean-sort-score(MSS)than any state-of-the-art method and has better visual perception.
文摘Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.
基金supported partly by the State Key Program of National Natural Science Foundation of China(60632020)the Youth Science Foundation of University of Electronic Science and Technology of China(JX0823).
文摘This paper designs a 3 mm radiometer and validate with experiments based on the principle of passive millimeter wave (PMMW) imaging. The poor spatial resolution, which is limited by antenna size, should be improved by post data processing. A conjugate-gradient (CG) algorithm is adopted to circumvent this drawback. Simulation and real data collected in laboratory environment are given, and the results show that the CG algorithm improves the spatial resolution and convergent rate. Further, it can reduce the ringing effects which are caused by regularizing the image restoration. Thus, the CG algorithm is easily implemented for PMMW imaging.
文摘To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image application firstly, and then the algorithm adopted for feature extraction and multidimensional indexing, and relevance feedback by this model are analyzed in detail. Finally, the contents intending to be researched about this model are proposed.
基金Supported by the Basic Research Foundation of Beijing Institute of Technology(3050012211105)
文摘A super-resolution reconstruction algorithm is proposed. The algorithm is based on the idea of the sparse representation of signals, by using the fact that the sparsest representation of a sig- nal is unique as the constraint of the patched-based reconstruction, and compensating residual errors of the reconstruction results both locally and globally to solve the distortion problem in patch-based reconstruction algorithms. Three reconstruction algorithms are compared. The results show that the images reconstructed with the new algorithm have the best quality.
基金the National Natural Science Foundation of China (60632020).
文摘Passive millimeter wave (PMMW) images inherently have the problem of poor resolution owing to limited aperture dimension. Thus, efficient post-processing is necessary to achieve resolution improvement. An adaptive projected Landweber (APL) super-resolution algorithm using a spectral correction procedure, which attempts to combine the strong points of all of the projected Landweber (PL) iteration and the adaptive relaxation parameter adjustment and the spectral correction method, is proposed. In the algorithm, the PL iterations are implemented as the main image restoration scheme and a spectral correction method is included in which the calculated spectrum within the passband is replaced by the known low frequency component. Then, the algorithm updates the relaxation parameter adaptively at each iteration. A qualitative evaluation of this algorithm is performed with simulated data as well as actual radiometer image captured by 91.5 GHz mechanically scanned radiometer. From experiments, it is found that the super-resolution algorithm obtains better results and enhances the resolution and has lower mean square error (MSE). These constraints and adaptive character and spectral correction procedures speed up the convergence of the Landweber algorithm and reduce the ringing effects that are caused by regularizing the image restoration problem.
基金supported by Balochistan University of Engineering and Technology,Khuzdar,Balochistan,Pakistan.
文摘Medical image super-resolution is a fundamental challenge due to absorption and scattering in tissues.These challenges are increasing the interest in the quality of medical images.Recent research has proven that the rapid progress in convolutional neural networks(CNNs)has achieved superior performance in the area of medical image super-resolution.However,the traditional CNN approaches use interpolation techniques as a preprocessing stage to enlarge low-resolution magnetic resonance(MR)images,adding extra noise in the models and more memory consumption.Furthermore,conventional deep CNN approaches used layers in series-wise connection to create the deeper mode,because this later end layer cannot receive complete information and work as a dead layer.In this paper,we propose Inception-ResNet-based Network for MRI Image Super-Resolution known as IRMRIS.In our proposed approach,a bicubic interpolation is replaced with a deconvolution layer to learn the upsampling filters.Furthermore,a residual skip connection with the Inception block is used to reconstruct a high-resolution output image from a low-quality input image.Quantitative and qualitative evaluations of the proposed method are supported through extensive experiments in reconstructing sharper and clean texture details as compared to the state-of-the-art methods.
基金the National Key Research and Development Program of China(No.2019YFB1405900)。
文摘Image super-resolution(SR)is an important technique for improving the resolution and quality of images.With the great progress of deep learning,image super-resolution achieves remarkable improvements recently.In this work,a brief survey on recent advances of deep learning based single image super-resolution methods is systematically described.The existing studies of SR techniques are roughly grouped into ten major categories.Besides,some other important issues are also introduced,such as publicly available benchmark datasets and performance evaluation metrics.Finally,this survey is concluded by highlighting four future trends.
文摘This paper discusses a pattern design system in textile industry,the establishment of an imagedatabase which is used to store various kinds of source materials for designers’ reference in order tospeed up design process.Pattern design image database (PDIDB) runs on the double-machine hardware system com-posed of ALTOS-986 and IBM PC/XT microcomputer.The former (host) manages imagedatabase,and the latter works both as a terminal to operate PDIDB and as an image processingstation to input,output,edit and display image data.PDIDB has two mainparts,the image storage management system and the image attributemanagement system and provides some functions,such as retrieval,deleting and updating.