The research results of processes proceeding in supersonic jets of light hydrocarbons, activated by an electron beam are presented. It is shown, that condensation suppressed at activation by electrons in the initial s...The research results of processes proceeding in supersonic jets of light hydrocarbons, activated by an electron beam are presented. It is shown, that condensation suppressed at activation by electrons in the initial stage of condensation. The developed condensation conditions mode leads to increasing of a part of heavy corpuscles in activated stream and not only owing to stimulation of condensation but because of formation of heavy hydrocarbonic molecules.展开更多
The terahertz(THz)vortex beam generators are designed and theoretically investigated based on single-layer ultra-thin transmission metasurfaces.Noncontinuous phase changes of metasurfaces are obtained by utilizing Pan...The terahertz(THz)vortex beam generators are designed and theoretically investigated based on single-layer ultra-thin transmission metasurfaces.Noncontinuous phase changes of metasurfaces are obtained by utilizing Pancharatnam-Berry phase elements,which possess different rotation angles and are arranged on two concentric rings centered on the origin.The circularly polarized incident THz beam could be turned into a cross-polarization transmission wave,and the orbital angular momentum(OAM)varies in value by lh.The l values change from±1 to±5,and the maximal cross-polarization conversion efficiency that could be achieved is 23%,which nearly reaches the theoretical limit of a single-layer structure.The frequency range of the designed vortex generator is from 1.2 THz to 1.9 THz,and the generated THz vortex beam could keep a high fidelity in the operating bandwidth.The propagation behavior of the emerged THz vortex beam is analyzed in detail.Our work offers a novel way of designing ultra-thin and single-layer vortex beam generators,which have low process complexity,high conversion efficiency and broad bandwidth.展开更多
This article presents a prototype of beam position and phase measurement(BPPM)electronics designed for the LINAC in China Accelerator Driven Sub-critical system(ADS).The signals received from the Beam Position Monitor...This article presents a prototype of beam position and phase measurement(BPPM)electronics designed for the LINAC in China Accelerator Driven Sub-critical system(ADS).The signals received from the Beam Position Monitor(BPM)detectors are narrow pulses with a repetition frequency of 162.5 MHz and a dynamic range more than40 dB.Based on the high-speed high-resolution Analog-to-Digital conversion technique,the input RF signals are directly converted to In-phase and Quadrature-phase(IQ)streams through under-sampling,which simplifies both the analog and digital processing circuits.All signal processing is integrated in one single FPGA,in which real-time beam position,phase and current can be obtained.A series of simulations and tests have been conducted to evaluate the performance.Initial test results indicate that this prototype achieves a phase resolution better than 0.1 degree and a position resolution better than 20μm over a 40 dB dynamic range with the bandwidth of 780 kHz,which is well beyond the application requirements.展开更多
Using conversion electron spectroscopy(CEMS) and slow positron beam, the chemical state of 57Fe(100keV,3×1016 cm-2) implanted into ZrO2 containing 0.03 mole fraction Y2O3(ZY3) and its thermodynamic behavior duri...Using conversion electron spectroscopy(CEMS) and slow positron beam, the chemical state of 57Fe(100keV,3×1016 cm-2) implanted into ZrO2 containing 0.03 mole fraction Y2O3(ZY3) and its thermodynamic behavior during annealing process at 200  ̄ 500℃ are studied.For as-implanted sample, Fe chemical states of Fe0,Fe2+ and Fe3+ are observed,and assigned to the superparamagnetic metallic iron cluster,iron dimer(and trimer) and complex of the Fe3+ associated with canon vacancy (V) and oxygens respectively.After annealing at 400℃ the complexes of Fe3+-V are mostly dissolved,and the prior phase to α-Fe and α-Fe nano-crystalline cluster are present in the sample.Meanwhile the mixed conducting of oxygen-ions and electrons in the ZY3 sample containing Fe appears,it may correlate with the different iron charge states and their relative amounts,in particular with the α-Fe nano-granule.展开更多
A fully digital beam position monitoring system(DBPM) has been designed for SSRF(Shanghai Synchrotron Radiation Facility). As analog-to-digital converter(ADC) is a crucial part in the DBPM system, the sampling methods...A fully digital beam position monitoring system(DBPM) has been designed for SSRF(Shanghai Synchrotron Radiation Facility). As analog-to-digital converter(ADC) is a crucial part in the DBPM system, the sampling methods should be studied to achieve optimum performance. Different sampling modes were used and compared through tests. Long term variation among four sampling channels, which would introduce errors in beam position measurement, is investigated. An interleaved distribution scheme was designed to address this issue. To evaluate the sampling methods, in-beam tests were conducted in SSRF. Test results indicate that with proper sampling methods, a turn-by-turn(TBT) position resolution better than 1 μm is achieved, and the slow-acquisition(SA) position resolution is improved from 4.28 μm to 0.17 μm.展开更多
A new class of all-fiber beam shaping devices has been realized by inverse etching the end face of single mode and multimode fibers to form a concave cone tip. Concave tip fiber can convert a Gaussian beam profile to ...A new class of all-fiber beam shaping devices has been realized by inverse etching the end face of single mode and multimode fibers to form a concave cone tip. Concave tip fiber can convert a Gaussian beam profile to a flat top beam profile with a uniform intensity distribution. A flat top beam with intensity variation of approx. 5% and flat top diameter to spot diameter ratio of 67% has been achieved. This device can also change the beam shape from a Gaussian to a donut by moving the observation plane. A flat top multimode fiber beam delivery is attractive for applications which require high power and uniform intensity distribution. In single mode fiber, concave tips could be used to reduce the beam spot size diameter, enabling efficient light coupling from a single mode fiber to an integrated optical waveguide.展开更多
文摘The research results of processes proceeding in supersonic jets of light hydrocarbons, activated by an electron beam are presented. It is shown, that condensation suppressed at activation by electrons in the initial stage of condensation. The developed condensation conditions mode leads to increasing of a part of heavy corpuscles in activated stream and not only owing to stimulation of condensation but because of formation of heavy hydrocarbonic molecules.
基金the National Natural Science Foundation of China(Grant No.62071312)the Important R&D Projects of Shanxi Province,China(Grant No.201803D121083)the Shanxi Scholarship Council(Grant No.2020-135).
文摘The terahertz(THz)vortex beam generators are designed and theoretically investigated based on single-layer ultra-thin transmission metasurfaces.Noncontinuous phase changes of metasurfaces are obtained by utilizing Pancharatnam-Berry phase elements,which possess different rotation angles and are arranged on two concentric rings centered on the origin.The circularly polarized incident THz beam could be turned into a cross-polarization transmission wave,and the orbital angular momentum(OAM)varies in value by lh.The l values change from±1 to±5,and the maximal cross-polarization conversion efficiency that could be achieved is 23%,which nearly reaches the theoretical limit of a single-layer structure.The frequency range of the designed vortex generator is from 1.2 THz to 1.9 THz,and the generated THz vortex beam could keep a high fidelity in the operating bandwidth.The propagation behavior of the emerged THz vortex beam is analyzed in detail.Our work offers a novel way of designing ultra-thin and single-layer vortex beam generators,which have low process complexity,high conversion efficiency and broad bandwidth.
基金Supported by the Knowledge Innovation Program of The Chinese Academy of Sciences(KJCX2-YW-N27)the National Natural Science Foundation of China(No.11205153,11185176,and 10875119)the Fundamental Research Funds for the Central Universities(WK2030040029)
文摘This article presents a prototype of beam position and phase measurement(BPPM)electronics designed for the LINAC in China Accelerator Driven Sub-critical system(ADS).The signals received from the Beam Position Monitor(BPM)detectors are narrow pulses with a repetition frequency of 162.5 MHz and a dynamic range more than40 dB.Based on the high-speed high-resolution Analog-to-Digital conversion technique,the input RF signals are directly converted to In-phase and Quadrature-phase(IQ)streams through under-sampling,which simplifies both the analog and digital processing circuits.All signal processing is integrated in one single FPGA,in which real-time beam position,phase and current can be obtained.A series of simulations and tests have been conducted to evaluate the performance.Initial test results indicate that this prototype achieves a phase resolution better than 0.1 degree and a position resolution better than 20μm over a 40 dB dynamic range with the bandwidth of 780 kHz,which is well beyond the application requirements.
文摘Using conversion electron spectroscopy(CEMS) and slow positron beam, the chemical state of 57Fe(100keV,3×1016 cm-2) implanted into ZrO2 containing 0.03 mole fraction Y2O3(ZY3) and its thermodynamic behavior during annealing process at 200  ̄ 500℃ are studied.For as-implanted sample, Fe chemical states of Fe0,Fe2+ and Fe3+ are observed,and assigned to the superparamagnetic metallic iron cluster,iron dimer(and trimer) and complex of the Fe3+ associated with canon vacancy (V) and oxygens respectively.After annealing at 400℃ the complexes of Fe3+-V are mostly dissolved,and the prior phase to α-Fe and α-Fe nano-crystalline cluster are present in the sample.Meanwhile the mixed conducting of oxygen-ions and electrons in the ZY3 sample containing Fe appears,it may correlate with the different iron charge states and their relative amounts,in particular with the α-Fe nano-granule.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KJCX2-YW-N27)National Natural Science Foundation of China(Nos.11205153 and 11175176)
文摘A fully digital beam position monitoring system(DBPM) has been designed for SSRF(Shanghai Synchrotron Radiation Facility). As analog-to-digital converter(ADC) is a crucial part in the DBPM system, the sampling methods should be studied to achieve optimum performance. Different sampling modes were used and compared through tests. Long term variation among four sampling channels, which would introduce errors in beam position measurement, is investigated. An interleaved distribution scheme was designed to address this issue. To evaluate the sampling methods, in-beam tests were conducted in SSRF. Test results indicate that with proper sampling methods, a turn-by-turn(TBT) position resolution better than 1 μm is achieved, and the slow-acquisition(SA) position resolution is improved from 4.28 μm to 0.17 μm.
文摘A new class of all-fiber beam shaping devices has been realized by inverse etching the end face of single mode and multimode fibers to form a concave cone tip. Concave tip fiber can convert a Gaussian beam profile to a flat top beam profile with a uniform intensity distribution. A flat top beam with intensity variation of approx. 5% and flat top diameter to spot diameter ratio of 67% has been achieved. This device can also change the beam shape from a Gaussian to a donut by moving the observation plane. A flat top multimode fiber beam delivery is attractive for applications which require high power and uniform intensity distribution. In single mode fiber, concave tips could be used to reduce the beam spot size diameter, enabling efficient light coupling from a single mode fiber to an integrated optical waveguide.