In this paper, an exponential inequality for the maximal partial sums of negatively superadditive-dependent (NSD, in short) random variables is established. By uSing the exponen- tial inequality, we present some gen...In this paper, an exponential inequality for the maximal partial sums of negatively superadditive-dependent (NSD, in short) random variables is established. By uSing the exponen- tial inequality, we present some general results on the complete convergence for arrays of rowwise NSD random variables, which improve or generalize the corresponding ones of Wang et al. [28] and Chen et al. [2]. In addition, some sufficient conditions to prove the complete convergence are provided. As an application of the complete convergence that we established, we further investigate the complete consistency and convergence rate of the estimator in a nonparametric regression model based on NSD errors.展开更多
In this paper, the complete convergence is established for the weighted sums of negatively superadditive-dependent random variables. As an application, the Marcinkiewicz-Zygmund strong law of large numbers for the ran...In this paper, the complete convergence is established for the weighted sums of negatively superadditive-dependent random variables. As an application, the Marcinkiewicz-Zygmund strong law of large numbers for the random weighted average is also achieved, and a simulation study is done for the asymptotic behaviour of random weighting estimator.展开更多
基金Supported by the National Natural Science Foundation of China(11501004,11501005,11526033,11671012)the Natural Science Foundation of Anhui Province(1508085J06,1608085QA02)+1 种基金the Key Projects for Academic Talent of Anhui Province(gxbj ZD2016005)the Research Teaching Model Curriculum of Anhui University(xjyjkc1407)
文摘In this paper, an exponential inequality for the maximal partial sums of negatively superadditive-dependent (NSD, in short) random variables is established. By uSing the exponen- tial inequality, we present some general results on the complete convergence for arrays of rowwise NSD random variables, which improve or generalize the corresponding ones of Wang et al. [28] and Chen et al. [2]. In addition, some sufficient conditions to prove the complete convergence are provided. As an application of the complete convergence that we established, we further investigate the complete consistency and convergence rate of the estimator in a nonparametric regression model based on NSD errors.
基金supported by a grant from Ferdowsi University of Mashhad(NO.2/42843)
文摘In this paper, the complete convergence is established for the weighted sums of negatively superadditive-dependent random variables. As an application, the Marcinkiewicz-Zygmund strong law of large numbers for the random weighted average is also achieved, and a simulation study is done for the asymptotic behaviour of random weighting estimator.