期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Hierarchically wood-derived integrated electrode with tunable superhydrophilic/superaerophobic surface for efficient urea electrolysis 被引量:1
1
作者 Yu Liao Songlin Deng +3 位作者 Yan Qing Han Xu Cuihua Tian Yiqiang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期566-575,I0014,共11页
Conferring surfaces with superhydrophilic/superaerophobic characteristics is desirable for synthesizing efficient gas reaction catalysts.However,complicated procedures,high costs,and poor interfaces hinder commerciali... Conferring surfaces with superhydrophilic/superaerophobic characteristics is desirable for synthesizing efficient gas reaction catalysts.However,complicated procedures,high costs,and poor interfaces hinder commercialization.Here,an integrated electrode with tunable wettability derived from a hierarchically porous wood scaffold was well designed for urea oxidation reaction(UOR).Interestingly,the outer surface of the wood lumen was optimized to the preferred wettability via stoichiometry to promote electrolyte permeation and gas escape.This catalyst exhibits outstanding activity and durability for UOR in alkaline media,requiring only a potential of 1.36 V(vs.RHE)to deliver 10 m A cm^(-2)and maintain its activity without significant decay for 60 h.These experiments and theoretical calculations demonstrate that the nickel(oxy)hydroxide layer formed through surface reconstruction of nickel nanoparticles improves the active sites and intrinsic activity.Moreover,the superwetting properties of the electrode promote mass transfer by guaranteeing substantial contact with the electrolyte and accelerating the separation of gaseous products during electrocatalysis.These findings provide the understanding needed to manipulate the surface wettability through rational design and fabrication of efficient electrocatalysts for gas-evolving processes. 展开更多
关键词 Integrated electrode Wood scaffold Superhydrophilic/superaerophobic surface Urea oxidation reaction
下载PDF
Ambient Fast Synthesis of Superaerophobic/Superhydrophilic Electrode for Superior Electrocatalytic Water Oxidation
2
作者 Jingjun Shen Jing Li +8 位作者 Bo Li Yun Zheng Xiaozhi Bao Junpo Guo Yan Guo Chenglong Lai Wen Lei Shuangyin Wang Huaiyu Shao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期356-363,共8页
Developing cost-effective and facile methods to synthesize efficient and stable electrocatalysts for large-scale water splitting is highly desirable but remains a significant challenge.In this study,a facile ambient t... Developing cost-effective and facile methods to synthesize efficient and stable electrocatalysts for large-scale water splitting is highly desirable but remains a significant challenge.In this study,a facile ambient temperature synthesis of hierarchical nickel-iron(oxy)hydroxides nanosheets on iron foam(FF-FN)with both superhydrophilicity and superaerophobicity is reported.Specifically,the as-fabricated FF-FN electrode demonstrates extraordinary oxygen evolution reaction(OER)activity with an ultralow overpotential of 195 mV at 10 mA cm^(-2)and a small Tafel slope of 34 mV dec^(-1)in alkaline media.Further theoretical investigation indicates that the involved lattice oxygen in nickel-iron-based-oxyhydroxide during electrochemical self-reconstruction can significantly reduce the OER reaction overpotential via the dominated lattice oxygen mechanism.The rechargeable Zn-air battery assembled by directly using the as-prepared FF-FN as cathode displays remarkable cycling performance.It is believed that this work affords an economical approach to steer commercial Fe foam into robust electrocatalysts for sustainable energy conversion and storage systems. 展开更多
关键词 ELECTROCATALYSIS oxygen evolution reaction oxyhydroxide superaerophobicity SUPERHYDROPHILICITY
下载PDF
Aluminum and phosphorus codoped “superaerophobic” Co3O4 microspheres for highly efficient electrochemical water splitting and Zn-air batteries 被引量:5
3
作者 Xian-Wei Lv Yuping Liu +2 位作者 Wenwen Tian Lijiao Gao Zhong-Yong Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期324-331,共8页
Multifunctional non-precious catalysts for hydrogen/oxygen evolution reaction(HER/OER) and oxygen reduction reaction(ORR) constitute the bottleneck in the applications in electrochemical overall water splitting(OWS) a... Multifunctional non-precious catalysts for hydrogen/oxygen evolution reaction(HER/OER) and oxygen reduction reaction(ORR) constitute the bottleneck in the applications in electrochemical overall water splitting(OWS) and Zn-air batteries. Herein, a trifunctional electrocatalyst of urchin-like Al,P-codoped Co3O4 microspheres supported on Ni foam(denoted as AP-CONPs/NF) was fabricated via a hydrothermal process and subsequent low-temperature annealing and phosphorization, exhibiting enhanced OER, HER and ORR activities compared with single-doped and undoped samples. Their surface self-organized microstructure and excellent "superaerophobic" feature make a high bubble repellency, which boost diffusion of reactants and electrolyte-electrode intimate contact. The codoping of Al and P elements into Co3O4 betters right the balance among surface chemical state, the increased oxygen vacancies and the promoted charge transfer. Encouraged by these synergistic advantages, the AP-CONPs/NF was further employed as excellent bifunctional electrodes for the OWS(low cell voltage of 1.57 V at 10 mA cm-2) and as air cathode for rechargeable Zn-air batteries(high power density of 89.1 mW cm-2), which demonstrates a great feasibility for practical applications. 展开更多
关键词 Trifunctional electrocatalysts CO3O4 Overall water splitting Zn-air batteries "superaerophobic"surface Anion-cation double doping
下载PDF
A Superaerophobic Bimetallic Selenides Heterostructure for Efficient Industrial-Level Oxygen Evolution at Ultra-High Current Densities 被引量:6
4
作者 Jiaxin Yuan Xiaodi Cheng +8 位作者 Hanqing Wang Chaojun Lei Sameer Pardiwala Bin Yang Zhongjian Li Qinghua Zhang Lecheng Lei Shaobin Wang Yang Hou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第8期213-224,共12页
Cost-effective and stable electrocatalysts with ultra-high current densities for electrochemical oxygen evolution reaction(OER)are critical to the energy crisis and environmental pollution.Herein,we report a superaero... Cost-effective and stable electrocatalysts with ultra-high current densities for electrochemical oxygen evolution reaction(OER)are critical to the energy crisis and environmental pollution.Herein,we report a superaerophobic three dimensional(3D)heterostructured nanowrinkles of bimetallic selenides consisting of crystalline NiSe2 and NiFe2Se4 grown on NiFe alloy(NiSe2/NiFe2Se4@NiFe)prepared by a thermal selenization procedure.In this unique 3D heterostructure,numerous nanowrinkles of NiSe2/NiFe2Se4 hybrid with a thickness of ~100 nm are grown on NiFe alloy in a uniform manner.Profiting by the large active surface area and high electronic conductivity,the superaerophobic NiSe2/NiFe2Se4@NiFe heterostructure exhibits excellent electrocatalytic activity and durability towards OER in alkaline media,outputting the low potentials of 1.53 and 1.54 V to achieve ultra-high current densities of 500 and 1000 mA cm^−2,respectively,which is among the most active Ni/Fe-based selenides,and even superior to the benchmark Ir/C catalyst.The in-situ derived FeOOH and NiOOH species from NiSe2/NiFe2Se4@NiFe are deemed to be efficient active sites for OER. 展开更多
关键词 superaerophobicity Bimetallic selenide Heterostructure electrocatalyst Strong interfacial coupling Oxygen evolution reaction
下载PDF
Biomimetic three-dimensional multilevel nanoarray electrodes with superaerophobicity as efficient bifunctional catalysts for electrochemical water splitting 被引量:1
5
作者 Dongdong Wang Yue Liu +5 位作者 Lili Liu Dongfang Shan Guixin Shen Shanlong Peng Heng Zhang Xindong Wang 《Nano Research》 SCIE EI CSCD 2023年第5期6584-6592,共9页
The design and preparation of cost-effective and durable catalysts for electrochemical water splitting are significant for the development and application of hydrogen production.Herein,inspired by the underwater super... The design and preparation of cost-effective and durable catalysts for electrochemical water splitting are significant for the development and application of hydrogen production.Herein,inspired by the underwater superaerophobicity of fish scales,a three-dimensional multilevel nanoarray electrode with superaerophobicity was designed and fabricated by the hydrothermal method to solve the bubble shielding effect in electrochemical reactions.Benefiting from the high specific surface area,superaerophobic properties,Al doping,the Al-CoS_(2)nanosheets(NSs)/nickel foam(NF)-30 exhibits outstanding electrocatalytic activity and superior durability for electrochemical water splitting in 1 M KOH.Significantly,the Al-CoS_(2)NSs/NF-30 only required extremely low overpotential of 176 mV for oxygen evolution reaction(OER)to reach a current density of 10 mA·cm^(-2).Al-CoS_(2)NSs/NF-30 was employed as bifunctional electrode for electrochemical water splitting with a cell voltage of 1.58 V at 10 mA·cm^(-2).Meanwhile,Al-CoS_(2) NSs/NF-30 exhibited excellent durability(250 h@10 mA·cm^(-2)and 50 h@100 mA·cm^(-2)).The cobalt-based catalyst(Al-CoS_(2) NSs/NF-30)with superaerophobicity exhibits excellent performance in activity and durability,therefore is a promising electrochemical water splitting catalyst. 展开更多
关键词 oxygen evolution reaction biomimetic structure superaerophobicity hydrogen evolution reaction
原文传递
Nanovilli electrode boosts hydrogen evolution:A surface with superaerophobicity and superhydrophilicity 被引量:3
6
作者 Yijun Yin Yan Tan +5 位作者 Qiuyuan Wei Shucong Zhang Siqi Wu Qin Huang Feilong Hu Yan Mi 《Nano Research》 SCIE EI CAS CSCD 2021年第4期961-968,共8页
Although tremendous efforts have been paid on electrocatalysts toward efficient electrochemical hydrogen generation,breakthrough is still highly needed in the design and synthesis of wonderful non-precious-metal elect... Although tremendous efforts have been paid on electrocatalysts toward efficient electrochemical hydrogen generation,breakthrough is still highly needed in the design and synthesis of wonderful non-precious-metal electrocatalyst.Herein,a nanovilli Ni2P electrode,which with superaerophobic and superhydropholic can significantly facilitate the mass and electron transfer was constructed via a facial morphology control strategy.Meanwhile,the substitution of sluggish oxygen evolution with urea oxidation,lowering the two-electrode cell voltage to only 1.48 volts to achieve a current density of 10 mA·cm^(-2).Thus,the as-constructed electrode achieves the operation of hydrogen generation by an AA battery.This work sheds new light on the exploration of other high-efficient electrocatalysts for hydrogen generation by using intermittent clean energy. 展开更多
关键词 nanovilli array superaerophobic and superhydropholic AA-battery-driven hydrogen evolution urea oxidation
原文传递
富含氧空位的NiFe氢氧化物衍生的具有超疏气纳米阵列形貌的磷化物及其全解水性能
7
作者 王珂宇 梁晨 +9 位作者 李诗谊 李嘉煜 易致远 徐放 王一兴 雷林峰 朱明辉 李思瑶 庄林洲 徐至 《Science China Materials》 SCIE EI CAS CSCD 2023年第7期2662-2671,共10页
对高效催化剂进行多尺度调控可优化中间体的吸附能量(原子层面),并实现快速传质(三维宏观层面),这对于提升整体水分解性能至关重要.在本工作中,我们首先在镍铁氢氧化物中引入氧空位,然后通过磷化反应将其转化为具有纳米阵列形态的NiFe-V... 对高效催化剂进行多尺度调控可优化中间体的吸附能量(原子层面),并实现快速传质(三维宏观层面),这对于提升整体水分解性能至关重要.在本工作中,我们首先在镍铁氢氧化物中引入氧空位,然后通过磷化反应将其转化为具有纳米阵列形态的NiFe-Vo-P催化剂.在析氧反应催化过程中,NiFe-Vo-P表面会原位形成磷酸盐阴离子及具有催化活性的Ni(Fe)OOH,能显著优化反应中间体的吸附强度.结果表明,NiFeVo-P在过电位为289 mV时电流密度可达1.5 A cm^(-2).同时,其超亲水/超疏气纳米阵列形貌可有效促进传质,在25和70℃的条件下,可在~2.0V的电池电压下分别获得580 mA cm^(-2)和1.0 A cm^(-2)的电流密度,是未进行超疏气形貌工程催化剂的电流密度的2倍以上. 展开更多
关键词 oxygen vacancies kirkendall voids superhydrophilic/superaerophobic surface nickel(iron)oxyhydroxides water splitting
原文传递
Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting 被引量:21
8
作者 Yingjie Li Haichuan Zhang +3 位作者 Ming Jiang Yun Kuang Xiaoming Sun Xue Duan 《Nano Research》 SCIE EI CAS CSCD 2016年第8期2251-2259,共9页
Exploring bifunctional catalysts for the hydrogen and oxygen evolution reactions (HER and OER) with high efficiency, low cost, and easy integration is extremely crucial for future renewable energy systems. Herein, t... Exploring bifunctional catalysts for the hydrogen and oxygen evolution reactions (HER and OER) with high efficiency, low cost, and easy integration is extremely crucial for future renewable energy systems. Herein, ternary NiCoP nanosheet arrays (NSAs) were fabricated on 3D Ni foam by a facile hydrothermal method followed by phosphorization. These arrays serve as bifunctional alkaline catalysts, exhibiting excellent electrocatalytic performance and good working stability for both the HER and OER. The overpotentials of the NiCoP NSA electrode required to drive a current density of 50 mA/cm2 for the HER and OER are as low as 133 and 308 mV, respectively, which is ascribed to excellent intrinsic electrocatalytic activity, fast electron transport, and a unique superaerophobic structure. When NiCoP was integrated as both anodic and cathodic material, the electrolyzer required a potential as low as -1.77 V to drive a current density of 50 mA/cm2 for overall water splitting, which is much smaller than a reported electrolyzer using the same kind of phosphide-based material and is even better than the combination of Pt/C and Ir/C, the best known noble metal-based electrodes. Combining satisfactory working stability and high activity, this NiCoP electrode paves the way for exploring overall water splitting catalysts. 展开更多
关键词 bifunctional catalysts water splitting NiCoP nanosheets superaerophobic electrode
原文传递
Enhancing oxygen evolution reaction by cationic surfactants 被引量:6
9
作者 Qixian Xie Daojin Zhou +6 位作者 Pengsong Li Zhao Cai Tianhui Xie Tengfei Gao Ruida Chen Yun Kuang Xiaoming Sun 《Nano Research》 SCIE EI CAS CSCD 2019年第9期2302-2306,共5页
Oxygen evolution reaction is critical for water splitting or metal-air batteries,but previous research mainly focuses on electrode material or structure optimization.Herein,we demonstrate that surfactant modification ... Oxygen evolution reaction is critical for water splitting or metal-air batteries,but previous research mainly focuses on electrode material or structure optimization.Herein,we demonstrate that surfactant modification of a NiFe layered double hydroxide (LDH) array electrode,one of the best catalysts for oxygen evolution reaction (OER),could achieve superaerophobic surface with balanced surface charges,affording fast mass transfer,quick gas release,and boosted OER performance.The assembled surfactants on the electrode surface are responsible for lowering the bubble adhesive force (~ 1.03 μN) and corresponding fast release of small bubbles generated during OER.In addition,the bipolar nature of the hexadecyl trimethyl ammonium bromide (CTAB) molecule lead to bilayer assembly of the surfactants with the polar ends facing the electrode surface and the electrolyte,resulting in neutralized charges on the electrode surface.As a result,OH-transfer was facilitated and OER performance was enhanced.With the modified superaerophobic surface and balanced surface charge,NiFe LDHs-CTAB nanostructured electrode showed ultrahigh current density increase (9.39 mA(mV·cm^2)),2.3 times higher than that for conventional NiFe LDH nanoarray electrode),dramatically fast gas release,and excellent durability.The introduction of surfactants to construct under-water superaerophobic electrode with in-time repelling ability to the as-formed gas bubbles may open up a new pathway for designing efficient electrodes for gas evolution systems with potentially practical application in the near future. 展开更多
关键词 SURFACTANT OXYGEN evolution reaction superaerophobicity BUBBLE RELEASE CHARGE balanee
原文传递
Femtosecond laser micro-nano processing for boosting bubble releasing of gas evolution reactions 被引量:1
10
作者 Shuai Zhang Lishuang Xu +8 位作者 Jie Wu Ying Yang Chengxin Zhang Haiyan Tao Jingquan Lin Licheng Huang Wencheng Fang Keying Shi Xiangting Dong 《Nano Research》 SCIE EI CSCD 2022年第2期1672-1679,共8页
Coupling effect of chemical composition and physical structure is a key factor to construct superaerophobic electrodes.Almost all reports about superaerophobic electrodes were aimed at precisely controlling morphology... Coupling effect of chemical composition and physical structure is a key factor to construct superaerophobic electrodes.Almost all reports about superaerophobic electrodes were aimed at precisely controlling morphology of loaded materials(constructing specific structure)and ignored the due role of substrate.Nevertheless,in this work,by using high precision and controllable femtosecond laser,hierarchical micro-nano structures with superaerophobic properties were constructed on the surface of silicon substrate(fs-Si),and such special super-wettability could be successfully inherited to subsequent self-supporting electrodes through chemical synthesis.Femtosecond laser processing endowed electrodes with high electrochemical surface area,strong physical structure,and remarkable superaerophobic efficacy.As an unconventional processing method,the reconstructed morphology of substrate surface bears the responsibility of superaerophobicity,thus liberating the structural constraints on loaded materials.Since this key of coupling effect is transferred from the loaded materials to substrate,we provided a new general scheme for synthesizing superaerophobic electrodes.The successful introduction of femtosecond laser will open a new idea to synthesize self-supporting electrodes for gas-involving reactions. 展开更多
关键词 femtosecond laser gas evolution reactions hydrogen evolution reaction superaerophobic electrodes bubbles releasing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部