Super-clean and super-spherical FGH4095 superalloy powder is produced by the ceramic-free electrode inductionmelt inert gas atomization(EIGA) technique.A continuous and steady-state liquid metal flow is achieved at ...Super-clean and super-spherical FGH4095 superalloy powder is produced by the ceramic-free electrode inductionmelt inert gas atomization(EIGA) technique.A continuous and steady-state liquid metal flow is achieved at high-frequency(350 k Hz) alternating current and high electric power(100 k W).The superalloy is immersed in a high-frequency induction coil,and the liquid metal falling into a supersonic nozzle is atomized by an Ar gas of high kinetic gas energy.Numerical calculations are performed to optimize the structure parameters for the nozzle tip.The undesired oxidation reaction of alloying elements starts at 1000℃ with the reaction originating from the active sites on the powder surfaces,leading to the formation of oxides,MexOy.The role of active sites and kinetic factors associated with the diffusion of oxygen present in the atomization gas streams are also examined.The observed results reveal that the oxidation process occurring at the surface of the produced powders gradually moves toward the core,and that there exists a clear interface between the product layer and the reactant.The present study lays a theoretical foundation for controlling the oxidation of nickel-based superalloy powders from the powder process step.展开更多
In order to investigate the influence of processing parameters on the granularity distribution of superalloy powders during the atomization of plasma rotating electrode processing (PREP), in this paper FGH95 superallo...In order to investigate the influence of processing parameters on the granularity distribution of superalloy powders during the atomization of plasma rotating electrode processing (PREP), in this paper FGH95 superalloy powders is prepared under different processing conditions by PREP and the influence of PREP processing parameters on the granularity distribution of FGH95 superalloy powders is discussed based on fractal geometry theory. The results show that with the increase of rotating velocity of the self-consuming electrode, the fractal dimension of the granularity distribution increases linearly, which results in the increase of the proportion of smaller powders. The change of interval between plasma gun and the self-consuming electrode has a little effect on the granularity distribution, also the fractal dimension of the granularity distribution changed a little correspondingly.展开更多
Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmen...Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmental service are inevitable challenges for turbine blades.Therefore,bonding techniques play a very important role in the manufacturing and repair of turbine blades.The transient liquid phase(TLP)bonding of DD5 Ni-based single crystal superalloy was performed using the designed H1 interlayer.A new third-generation Ni-based superalloy T1 powder was mixed with H1 powder as another interlayer to improve the mechanical properties of the bonded joints.The res-ults show that,such a designed H1 interlayer is beneficial to the improvement of shear strength of DD5 alloy bonded joints by adjusting the bonding temperature and the prolongation of holding time.The maximum shear strength at room temperature of the joint with H1 interlayer reached 681 MPa when bonded at 1260℃for 3 h.The addition of T1 powder can effectively reduce holding time or relatively lower bond-ing temperature,while maintaining relatively high shear strength.When 1 wt.%T1 powder was mixed into H1 interlayer,the maximum room temperature shear strength of the joint bonded at 1260℃reached 641 MPa,which could be obtained for only 1 h.Considering the bonding temperature and the efficiency,the acceptable process parameter of H1+5 wt.%T1 interlayer was 1240℃/2 h,and the room tem-perature shear strength reached 613 MPa.展开更多
Static recrystallization(SRX)characteristics of a powder metallurgy superalloy were investigated by isothermal compression at 1080–1170°C under strain rates of 0.01–0.1 s−1,strains of 0.1,0.22,or 0.5,and holdin...Static recrystallization(SRX)characteristics of a powder metallurgy superalloy were investigated by isothermal compression at 1080–1170°C under strain rates of 0.01–0.1 s−1,strains of 0.1,0.22,or 0.5,and holding time of 0–300 s.The impacts of temperature,strain rate,holding time,and strain on the SRXed grain size,volume fraction,and microtexture were explored by electron backscatter diffraction technique.It was found that temperature played a key role in these processes.As SRX progressed,the<110>fiber parallel to the axis compression direction gradually weakened and was replaced by the<001>fiber because<001>was the preferred recrystallization orientation and grain growth direction for the Ni-based superalloy.Moreover,high temperatures and low strain rates promoted the formation of the<001>fiber.Three nucleation mechanisms during SRX process were found:grain boundary bulging,primary twin assistance,and subgrain coalescence.Grain boundary bulging occurred under all process conditions;however,at low temperatures and high strain rates,the latter two mechanisms could provide additional nucleation modes.In addition,SRX size and volume fraction models were established.展开更多
The surface microstructure and the surface segregation of FGH 95 nickel-basedsuperalloy powders prepared through plasma rotating electrode processing (PREP) have beeninvestigated by using SEM and AES. The results indi...The surface microstructure and the surface segregation of FGH 95 nickel-basedsuperalloy powders prepared through plasma rotating electrode processing (PREP) have beeninvestigated by using SEM and AES. The results indicate that the surface microstructure of powderschanges from dendrite into cellular stricture as the particle size of powders decrease, and thepredominant precipitates solidified on the particle surfaces were identified as MC' type carbidesenriched with Nb and Ti. It was also indicated that along with the depth of particle surfaces, thesegregation layer of S, C and O elements are thick, and that of Ti, Cr elements are thin for largesire powders while they are in reverse for median size particles.展开更多
The effects of size distribution,morphology and volume fraction ofγ′phase and grain size on tensile properties of powder processed Ni-based superalloy were investigated by using two different quenching methods.Oil q...The effects of size distribution,morphology and volume fraction ofγ′phase and grain size on tensile properties of powder processed Ni-based superalloy were investigated by using two different quenching methods.Oil quenching and air cooling were adopted with cooling rate of 183°C/s and 4?15°C/s,respectively.The experimental results show that the average size of the secondaryγ′after oil quenching is 24.5 nm compared with 49.8 nm under air cooling,and corresponding volume fractions ofγ′are 29%and 34%,respectively.Meanwhile,the average grain size remains nearly equivalent from both oil-quenching and air-cooling specimens.The tensile strength at room temperature is higher for the oil-quenched specimen than the equivalent from the air-cooled specimen,but the difference approaches each other as the temperature increases to 650°C.The fractography clearly demonstrates that transgranular fracture governs the failure process at ambient temperature,in contrast to the intergranular fracture at 650°C or even higher temperature.These two mechanical responses indicate the strengthening effects ofγ′precipitates and grain boundary for polycrystalline Ni-based superalloys at different temperatures.展开更多
The effects of inclusions in powder superalloy FGH96 on low-cycle fatigue life were studied, and a low-cycle crack initiation life prediction model based on the theory of damage mechanics was proposed. The damage char...The effects of inclusions in powder superalloy FGH96 on low-cycle fatigue life were studied, and a low-cycle crack initiation life prediction model based on the theory of damage mechanics was proposed. The damage characterization parameter was proposed after the construction of damage evolution equations. Fatigue tests of the powder superalloy specimens with and without inclusion were conducted at 530 and 600 ℃, and the model verification was carried out for specimens with elliptical, semi-elliptical, polygon and strip-shaped surface/subsurface inclusion. The stress analysis was performed by finite element simulation and the predicted life was calculated. The results showed a satisfying agreement between predicted and experimental life.展开更多
The deformation behavior of hot isostatic pressing (HIP) FGH96 superalloy was characterized in the temperature range of 1000-1100 ℃ and strain rate range of 0. 001-0. 1 s^-1 using hot compression testing. The flow ...The deformation behavior of hot isostatic pressing (HIP) FGH96 superalloy was characterized in the temperature range of 1000-1100 ℃ and strain rate range of 0. 001-0. 1 s^-1 using hot compression testing. The flow curves of HIP FGH96, superalloy during hot deformation was analyzed systematically. The results show that deformation temperature, strain rate and strain are the main influence factors on flow stress of HIP FGH96 superalloy during hot deformation. The flow stress displays a peak at a critical strain and then decreases with further increase in strain. For a given strain, the flow stress decreases with the increase of deformation temperature, and increases with the increase of strain rate. A mathematical model of these flow curves was established through regression analysis and taking the strain as a modification factor. The calculated stress values agree well with the experimental values.展开更多
The role of niobium in nickel-based superalloys is reviewed. The importance of niobium as a strengthener is discussed. New developments in nickel-based superalloys are also briefly mentioned, including some results th...The role of niobium in nickel-based superalloys is reviewed. The importance of niobium as a strengthener is discussed. New developments in nickel-based superalloys are also briefly mentioned, including some results that show improved resistance to sulfidation by niobium. Research results from a current program on the role of niobium in the Russian powder metallurgy alloy EP741NP are presented. Future research plans on the role of niobium in superalloys are also discussed.展开更多
The deposited billet of a new type powder metallurgy (PM) superalloy FGH4095M for use in turbine disk manufac- turing has been fabricated using spray forming technology. The metallurgical quality of the deposited bi...The deposited billet of a new type powder metallurgy (PM) superalloy FGH4095M for use in turbine disk manufac- turing has been fabricated using spray forming technology. The metallurgical quality of the deposited billet was analyzed in terms of density, texture, and grain size. Comparative research was done on the microstructure and mechanical properties between the flat disk preform prepared with hot isostatic pressing (HIP) and the same alloy forgings prepared with HIP followed by isothermal forging (IF). The results show that the density of the spray-formed and nitrogen-atomized deposit billet is above 99% of the theoretical density, indicating a compact structure. The grains are uniform and fine. The billet has weak texture with a random distribution in the spray deposition direction and perpendicular to the direction of deposition. A part of atomizing nitrogen exists in the preform in the form of carbonitride. Nitrogen-induced microporosity causes the density reduction of the preform. Compared with the process of HIP+IF, the superalloy FGH4095M after HIP has better mechanical properties at both room temperature and high temperature. The sizes of the 7~ phase are finer in microstructure of the preform after HIP in comparison with the forgings after HIP+IE This work shows that SF+HIP is a viable processing route for FGH4095M as a turbine-disk material.展开更多
P/M superalloy disks obtain their final strength by appropriate heat treatments; the maximum attainable strength depends on the rapid cooling rate from the solution annealing. A rapid quench of a large disk forging ca...P/M superalloy disks obtain their final strength by appropriate heat treatments; the maximum attainable strength depends on the rapid cooling rate from the solution annealing. A rapid quench of a large disk forging can cause two problems, surface cracking and shape distortion.In the past,many attempts employ the finite element code to model and to predict temperature evolution and induced stress distribution in a large turbine disk. The major difficulty was the correct description of alloy behavior; particularly the thermomechanical properties and the failure criteria of material during the cooling. High temperature fatigue resistance is always the key requirement for disk materials. New methodology of residual life management emphasizes the initiation as well as the propagation of the cracks developed under the service conditions. One of major challenges to P/M superalloys is the time-dependent behavior of fatigue cracking, which relates to the well-known SAGBO (stress-assisted grain boundary oxidation) phenomenon.A great effort has been done to understand the micro-mechanism of time-dependent fatigue crack propagation resulted in the second generation of P/M superalloys. Further improvement on temperature capability of disk alloys at rim area may lead to the idea of dual-property disks.Different grain structures at different portions of a large disk are possible,as the property requirements for different locations are different. This goal is achievable if the thermal history at specific disk locations can be controlled to develop desirable microstructures and properties.Some suggestions on the future direction of research efforts will be discused.展开更多
The hot deformation behaviors of FGH98 nickel-based powder superalloy were experimentally investigated and theoretically analyzed by Arrhenius models and machine learning(ML).Hot compression tests were conducted with ...The hot deformation behaviors of FGH98 nickel-based powder superalloy were experimentally investigated and theoretically analyzed by Arrhenius models and machine learning(ML).Hot compression tests were conducted with a Gleeble-3800 thermo-mechanical simulation machine on the FGH98 superalloy at strain rates of 0.001–1 s–1 and temperatures of 1025–1175℃.The peak stresses under different deformation conditions were analyzed via the Sellars model and an ML-inspired Gaussian process regression(GPR)model.The prediction of the GPR model outperformed that from the Sellars model.In addition,the stress-strain responses were predicted by the GPR model and tested by experimentally measured stress-strain curves.The results indicate that the developed GPR model has great power with wide generalization capability in the prediction of hot deformation behaviors of FGH98 superalloy,as evidenced by the R2 value higher than 0.99 on the test dataset.展开更多
Grinding with cubic boron nitride(CBN)superabrasive is a widely used method of machining superalloy in aerospace industries.However,there are some issues,such as poor grinding quality and severe tool wear,in grinding ...Grinding with cubic boron nitride(CBN)superabrasive is a widely used method of machining superalloy in aerospace industries.However,there are some issues,such as poor grinding quality and severe tool wear,in grinding of powder metallurgy superalloy FGH96.In addition,abrasive wheel wear is the significant factor that hinders the further application of CBN abrasive wheels.In this case,the experiment of grinding FGH96 with single CBN abrasive grain using different parameters was carried out.The wear characteristics of CBN abrasive grain were analyzed by experiment and simulation.The material removal behavior affected by CBN abrasive wear was also studied by discussing the pile-up ratio during grinding process.It shows that morphological characteristics of CBN abrasive grain and grinding infeed direction affect the CBN abrasive wear seriously by simulation analysis.Attrition wear,micro break,and macro fracture had an important impact on material removal characteristics.Besides,compared with the single cutting edge,higher pile-up ratio was obtained by multiple cutting edges,which reduced the removal efficiency of the material.Therefore,weakening multiple cutting edge grinding on abrasive grains in the industrial production,such as applying suitable dressing strategy,is an available method to improve the grinding quality and efficiency.展开更多
This article makes an investigation into the creep behavior and deformation features of FGH95 powder Ni-base superalloy by means of creep curves and microstructural observation. Results show that this superalloy expos...This article makes an investigation into the creep behavior and deformation features of FGH95 powder Ni-base superalloy by means of creep curves and microstructural observation. Results show that this superalloy exposes obvious sensibility to the applied temperature and stresses in the experimental range. Microstructure of the alloy consists of γ' phase of various sizes and dispersed carbide particles precipitated in the wider crystal boundaries between the powder particles. During the creep, the deformation of the alloy occurs in the form of singleor double-oriented slipping inside the grains, and some of the finer carbide particles are precipitated near the slipping traces. The wide grain boundaries might be broken into the finer grains due to severe deformation. The deformation mechanism of the alloy during creep is thought to be the activation of dislocations of double-oriented slipping, including (1/2)〈 110〉 dislocation inside the γ matrix phase and 〈110〉 super-dislocation inside the γ'phase. The formation of the stacking faults and (1/3)〈112〉 super-Shockleys partial dislocation configuration is attributed to the decomposition of 〈 110〉 super-dislocation in the γ' phase.展开更多
In this article,a grinding force model,which is on the basis of cutting process of single abrasive grains combined with the method of theoretical derivation and empirical formula by analyzing the formation mechanism o...In this article,a grinding force model,which is on the basis of cutting process of single abrasive grains combined with the method of theoretical derivation and empirical formula by analyzing the formation mechanism of grinding force,was established.Three key factors have been taken into accounts in this model,such as the contact friction force between abrasive grains and materials,the plastic deformation of material in the process of abrasive plowing,and the shear strain effect of material during the process of cutting chips formation.The model was finally validated by the orthogonal grinding experiment of powder metallurgy nickel-based superalloy FGH96 by using the electroplated CBN abrasive wheel.Grinding force values of prediction and experiment were in good consistency.The errors of tangential grinding force and normal grinding force were 9.8%and 13.6%,respectively.The contributions of sliding force,plowing force and chip formation force were also analyzed.In addition,the tangential forces of sliding,plowing and chip formation are 14%,19%and 11%of the normal forces on average,respectively.The pro-posed grinding forcemodel is not only in favor of optimizing the grinding parameters and improving grinding efficiency,but also contributes to study some other grinding subjects(e.g.abrasive wheel wear,grinding heat,residual stress).展开更多
In this study,the machined surface quality of powder metallurgy nickel-based superalloy FGH96(similar to Rene88DT)and the grinding characteristics of brown alumina(BA)and microcrystalline alumina(MA)abrasive wheels we...In this study,the machined surface quality of powder metallurgy nickel-based superalloy FGH96(similar to Rene88DT)and the grinding characteristics of brown alumina(BA)and microcrystalline alumina(MA)abrasive wheels were comparatively analyzed during creep feed grinding.The infuences of the grinding parameters(abrasive wheel speed,workpiece infeed speed,and depth of cut)on the grinding force,grinding temperature,surface roughness,surface morphology,tool wear,and grinding ratio were analyzed comprehensively.The experimental results showed that there was no significant difference in terms of the machined surface quality and grinding characteristics of FGH96 during grinding with the two types of abrasive wheels.This was mainly because the grinding advantages of the MA wheel were weakened for the difficult-to-cut FGH96 material.Moreover,both the BA and MA abrasive wheeIs exhibited severe tool wear in the form of wheel clogging and workpiece material adhesion.Finally,an analytical model for prediction of the grinding ratio was established by combining the tool wear volume,grinding force,and grinding length.The acceptable errors between the predicted and experimental grinding ratios(ranging from 0.6 to 1.8)were 7.56%and 6.31%for the BA and MA abrasive wheels,respectively.This model can be used to evaluate quantitatively the grinding performance of an alumina abrasive wheel,and is therefore helpful for optimizing the grinding parameters in the creep feed grinding process.展开更多
With a strain rate range of 0.01–10 s^(−1) and a deformation temperature range of 1110–1200℃,the isothermal compression test was performed on one powder metallurgy superalloy which is macroscopic segregation free.U...With a strain rate range of 0.01–10 s^(−1) and a deformation temperature range of 1110–1200℃,the isothermal compression test was performed on one powder metallurgy superalloy which is macroscopic segregation free.Using electron backscatter diffraction,the effect of strain rate and deformation temperature on grain shape and grain size of superalloys during thermal deformation was studied.The results established that exquisite and equiaxed dynamic recrystallization(DRX)grains are procured at supernal deformation temperature and high strain rate because of the high dislocation density.At the same time,the interaction between high DRX nucleation rate and low grain growth rate at high strain rate is favorable in making finer DRX grains.The equivalent medial grain size expanded with lowering strain rate and elevating proof temperature.Moreover,the grain shape was researched by the effective method of aspect ratio.Most aspect ratio of original grains is 0.61,and the aspect ratio has important implications for DRX and grain growth process.The average aspect ratio increases slightly when deformation temperature rises from 1110 to 1140℃,while the average aspect ratio increases memorably as the deformation temperature is higher than 1140℃.展开更多
A modified FGH96 superalloy using 0.1 wt% graphene was successfully prepared using the wet mixing method. The interracial bonding mechanism between the graphene and the superalloy matrix was characterized using optica...A modified FGH96 superalloy using 0.1 wt% graphene was successfully prepared using the wet mixing method. The interracial bonding mechanism between the graphene and the superalloy matrix was characterized using optical micro- scope, scanning electronic microscope, transmission electronic microscope and X-ray tomography. The results revealed that the graphene could be dispersed uniformly inside the matrix of the superalloy, and the bonding interface between graphene and the superalloy showed a rather diffusion instead of abrupt distinction, suggesting that the interface was formed via chemical fusion rather than a mechanical combination. The uniform dispersity of the graphene inside the superalloy matrix could improve the tensile properties significantly, including tensile strength, plasticity and yield strength. The existence of the graphene at the fracture surface further verified that the graphene could increase the effective bearing force of the material during the tensile test.展开更多
文摘Super-clean and super-spherical FGH4095 superalloy powder is produced by the ceramic-free electrode inductionmelt inert gas atomization(EIGA) technique.A continuous and steady-state liquid metal flow is achieved at high-frequency(350 k Hz) alternating current and high electric power(100 k W).The superalloy is immersed in a high-frequency induction coil,and the liquid metal falling into a supersonic nozzle is atomized by an Ar gas of high kinetic gas energy.Numerical calculations are performed to optimize the structure parameters for the nozzle tip.The undesired oxidation reaction of alloying elements starts at 1000℃ with the reaction originating from the active sites on the powder surfaces,leading to the formation of oxides,MexOy.The role of active sites and kinetic factors associated with the diffusion of oxygen present in the atomization gas streams are also examined.The observed results reveal that the oxidation process occurring at the surface of the produced powders gradually moves toward the core,and that there exists a clear interface between the product layer and the reactant.The present study lays a theoretical foundation for controlling the oxidation of nickel-based superalloy powders from the powder process step.
文摘In order to investigate the influence of processing parameters on the granularity distribution of superalloy powders during the atomization of plasma rotating electrode processing (PREP), in this paper FGH95 superalloy powders is prepared under different processing conditions by PREP and the influence of PREP processing parameters on the granularity distribution of FGH95 superalloy powders is discussed based on fractal geometry theory. The results show that with the increase of rotating velocity of the self-consuming electrode, the fractal dimension of the granularity distribution increases linearly, which results in the increase of the proportion of smaller powders. The change of interval between plasma gun and the self-consuming electrode has a little effect on the granularity distribution, also the fractal dimension of the granularity distribution changed a little correspondingly.
基金supported by the National Science and Technology Major Project(2017-VI-0009-0080)the Key-Area Research and Development Program of Guangdong Province(2019B010935001)+1 种基金Shenzhen Science and Technology Plan(Project No.JSGG20210802093205015)Industry and Information Technology Bureau of Shenzhen Municipality(Project No.201806071354163490).
文摘Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmental service are inevitable challenges for turbine blades.Therefore,bonding techniques play a very important role in the manufacturing and repair of turbine blades.The transient liquid phase(TLP)bonding of DD5 Ni-based single crystal superalloy was performed using the designed H1 interlayer.A new third-generation Ni-based superalloy T1 powder was mixed with H1 powder as another interlayer to improve the mechanical properties of the bonded joints.The res-ults show that,such a designed H1 interlayer is beneficial to the improvement of shear strength of DD5 alloy bonded joints by adjusting the bonding temperature and the prolongation of holding time.The maximum shear strength at room temperature of the joint with H1 interlayer reached 681 MPa when bonded at 1260℃for 3 h.The addition of T1 powder can effectively reduce holding time or relatively lower bond-ing temperature,while maintaining relatively high shear strength.When 1 wt.%T1 powder was mixed into H1 interlayer,the maximum room temperature shear strength of the joint bonded at 1260℃reached 641 MPa,which could be obtained for only 1 h.Considering the bonding temperature and the efficiency,the acceptable process parameter of H1+5 wt.%T1 interlayer was 1240℃/2 h,and the room tem-perature shear strength reached 613 MPa.
基金supported by the technology development fund of Beijing Research Institute of Mechanical&Electrical Technology Co.,Ltd.,CAM,Construction of Innovation Leading Talents and Innovation Team of China Academy of Machinery Science and Technology Group:Vacuum forming technology and equipment innovation team.
文摘Static recrystallization(SRX)characteristics of a powder metallurgy superalloy were investigated by isothermal compression at 1080–1170°C under strain rates of 0.01–0.1 s−1,strains of 0.1,0.22,or 0.5,and holding time of 0–300 s.The impacts of temperature,strain rate,holding time,and strain on the SRXed grain size,volume fraction,and microtexture were explored by electron backscatter diffraction technique.It was found that temperature played a key role in these processes.As SRX progressed,the<110>fiber parallel to the axis compression direction gradually weakened and was replaced by the<001>fiber because<001>was the preferred recrystallization orientation and grain growth direction for the Ni-based superalloy.Moreover,high temperatures and low strain rates promoted the formation of the<001>fiber.Three nucleation mechanisms during SRX process were found:grain boundary bulging,primary twin assistance,and subgrain coalescence.Grain boundary bulging occurred under all process conditions;however,at low temperatures and high strain rates,the latter two mechanisms could provide additional nucleation modes.In addition,SRX size and volume fraction models were established.
基金This work is financially supported by The National Defence Committee of ChineseTechnology(No.95-YJ-20)
文摘The surface microstructure and the surface segregation of FGH 95 nickel-basedsuperalloy powders prepared through plasma rotating electrode processing (PREP) have beeninvestigated by using SEM and AES. The results indicate that the surface microstructure of powderschanges from dendrite into cellular stricture as the particle size of powders decrease, and thepredominant precipitates solidified on the particle surfaces were identified as MC' type carbidesenriched with Nb and Ti. It was also indicated that along with the depth of particle surfaces, thesegregation layer of S, C and O elements are thick, and that of Ti, Cr elements are thin for largesire powders while they are in reverse for median size particles.
基金Project(2012AA03A514)supported by the National High-Tech Research and Development Program of ChinaProjects(2016YFB0700300,2016YFB0701404)supported by the National Key Research and Development Program of China
文摘The effects of size distribution,morphology and volume fraction ofγ′phase and grain size on tensile properties of powder processed Ni-based superalloy were investigated by using two different quenching methods.Oil quenching and air cooling were adopted with cooling rate of 183°C/s and 4?15°C/s,respectively.The experimental results show that the average size of the secondaryγ′after oil quenching is 24.5 nm compared with 49.8 nm under air cooling,and corresponding volume fractions ofγ′are 29%and 34%,respectively.Meanwhile,the average grain size remains nearly equivalent from both oil-quenching and air-cooling specimens.The tensile strength at room temperature is higher for the oil-quenched specimen than the equivalent from the air-cooled specimen,but the difference approaches each other as the temperature increases to 650°C.The fractography clearly demonstrates that transgranular fracture governs the failure process at ambient temperature,in contrast to the intergranular fracture at 650°C or even higher temperature.These two mechanical responses indicate the strengthening effects ofγ′precipitates and grain boundary for polycrystalline Ni-based superalloys at different temperatures.
基金sponsored by AECC Beijing Institute of Aeronautical Materialsfunded by National High-tech R&D Program of China (863 Program) (No. 2015AA034401)。
文摘The effects of inclusions in powder superalloy FGH96 on low-cycle fatigue life were studied, and a low-cycle crack initiation life prediction model based on the theory of damage mechanics was proposed. The damage characterization parameter was proposed after the construction of damage evolution equations. Fatigue tests of the powder superalloy specimens with and without inclusion were conducted at 530 and 600 ℃, and the model verification was carried out for specimens with elliptical, semi-elliptical, polygon and strip-shaped surface/subsurface inclusion. The stress analysis was performed by finite element simulation and the predicted life was calculated. The results showed a satisfying agreement between predicted and experimental life.
基金Supported by Young Teacher Foundation of Tianjin University (5110105) and Aeronautic Science Foundation (03H53048).
文摘The deformation behavior of hot isostatic pressing (HIP) FGH96 superalloy was characterized in the temperature range of 1000-1100 ℃ and strain rate range of 0. 001-0. 1 s^-1 using hot compression testing. The flow curves of HIP FGH96, superalloy during hot deformation was analyzed systematically. The results show that deformation temperature, strain rate and strain are the main influence factors on flow stress of HIP FGH96 superalloy during hot deformation. The flow stress displays a peak at a critical strain and then decreases with further increase in strain. For a given strain, the flow stress decreases with the increase of deformation temperature, and increases with the increase of strain rate. A mathematical model of these flow curves was established through regression analysis and taking the strain as a modification factor. The calculated stress values agree well with the experimental values.
文摘The role of niobium in nickel-based superalloys is reviewed. The importance of niobium as a strengthener is discussed. New developments in nickel-based superalloys are also briefly mentioned, including some results that show improved resistance to sulfidation by niobium. Research results from a current program on the role of niobium in the Russian powder metallurgy alloy EP741NP are presented. Future research plans on the role of niobium in superalloys are also discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.50974016 and 50071014)
文摘The deposited billet of a new type powder metallurgy (PM) superalloy FGH4095M for use in turbine disk manufac- turing has been fabricated using spray forming technology. The metallurgical quality of the deposited billet was analyzed in terms of density, texture, and grain size. Comparative research was done on the microstructure and mechanical properties between the flat disk preform prepared with hot isostatic pressing (HIP) and the same alloy forgings prepared with HIP followed by isothermal forging (IF). The results show that the density of the spray-formed and nitrogen-atomized deposit billet is above 99% of the theoretical density, indicating a compact structure. The grains are uniform and fine. The billet has weak texture with a random distribution in the spray deposition direction and perpendicular to the direction of deposition. A part of atomizing nitrogen exists in the preform in the form of carbonitride. Nitrogen-induced microporosity causes the density reduction of the preform. Compared with the process of HIP+IF, the superalloy FGH4095M after HIP has better mechanical properties at both room temperature and high temperature. The sizes of the 7~ phase are finer in microstructure of the preform after HIP in comparison with the forgings after HIP+IE This work shows that SF+HIP is a viable processing route for FGH4095M as a turbine-disk material.
文摘P/M superalloy disks obtain their final strength by appropriate heat treatments; the maximum attainable strength depends on the rapid cooling rate from the solution annealing. A rapid quench of a large disk forging can cause two problems, surface cracking and shape distortion.In the past,many attempts employ the finite element code to model and to predict temperature evolution and induced stress distribution in a large turbine disk. The major difficulty was the correct description of alloy behavior; particularly the thermomechanical properties and the failure criteria of material during the cooling. High temperature fatigue resistance is always the key requirement for disk materials. New methodology of residual life management emphasizes the initiation as well as the propagation of the cracks developed under the service conditions. One of major challenges to P/M superalloys is the time-dependent behavior of fatigue cracking, which relates to the well-known SAGBO (stress-assisted grain boundary oxidation) phenomenon.A great effort has been done to understand the micro-mechanism of time-dependent fatigue crack propagation resulted in the second generation of P/M superalloys. Further improvement on temperature capability of disk alloys at rim area may lead to the idea of dual-property disks.Different grain structures at different portions of a large disk are possible,as the property requirements for different locations are different. This goal is achievable if the thermal history at specific disk locations can be controlled to develop desirable microstructures and properties.Some suggestions on the future direction of research efforts will be discused.
基金supported by the National Natural Science Foundation of China(No.91860115)the Science,Technology,and Innovation Commission of Shenzhen Municipality(No.JSGG20210802093205015).
文摘The hot deformation behaviors of FGH98 nickel-based powder superalloy were experimentally investigated and theoretically analyzed by Arrhenius models and machine learning(ML).Hot compression tests were conducted with a Gleeble-3800 thermo-mechanical simulation machine on the FGH98 superalloy at strain rates of 0.001–1 s–1 and temperatures of 1025–1175℃.The peak stresses under different deformation conditions were analyzed via the Sellars model and an ML-inspired Gaussian process regression(GPR)model.The prediction of the GPR model outperformed that from the Sellars model.In addition,the stress-strain responses were predicted by the GPR model and tested by experimentally measured stress-strain curves.The results indicate that the developed GPR model has great power with wide generalization capability in the prediction of hot deformation behaviors of FGH98 superalloy,as evidenced by the R2 value higher than 0.99 on the test dataset.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.92160301,52175415)Major Special Projects of Aero-engine and Gas Turbine(Grant No.2017-VII-0002-0095)Funding for Outstanding Doctoral Dissertation in NUAA(Grant No.BCXJ19-06).
文摘Grinding with cubic boron nitride(CBN)superabrasive is a widely used method of machining superalloy in aerospace industries.However,there are some issues,such as poor grinding quality and severe tool wear,in grinding of powder metallurgy superalloy FGH96.In addition,abrasive wheel wear is the significant factor that hinders the further application of CBN abrasive wheels.In this case,the experiment of grinding FGH96 with single CBN abrasive grain using different parameters was carried out.The wear characteristics of CBN abrasive grain were analyzed by experiment and simulation.The material removal behavior affected by CBN abrasive wear was also studied by discussing the pile-up ratio during grinding process.It shows that morphological characteristics of CBN abrasive grain and grinding infeed direction affect the CBN abrasive wear seriously by simulation analysis.Attrition wear,micro break,and macro fracture had an important impact on material removal characteristics.Besides,compared with the single cutting edge,higher pile-up ratio was obtained by multiple cutting edges,which reduced the removal efficiency of the material.Therefore,weakening multiple cutting edge grinding on abrasive grains in the industrial production,such as applying suitable dressing strategy,is an available method to improve the grinding quality and efficiency.
文摘This article makes an investigation into the creep behavior and deformation features of FGH95 powder Ni-base superalloy by means of creep curves and microstructural observation. Results show that this superalloy exposes obvious sensibility to the applied temperature and stresses in the experimental range. Microstructure of the alloy consists of γ' phase of various sizes and dispersed carbide particles precipitated in the wider crystal boundaries between the powder particles. During the creep, the deformation of the alloy occurs in the form of singleor double-oriented slipping inside the grains, and some of the finer carbide particles are precipitated near the slipping traces. The wide grain boundaries might be broken into the finer grains due to severe deformation. The deformation mechanism of the alloy during creep is thought to be the activation of dislocations of double-oriented slipping, including (1/2)〈 110〉 dislocation inside the γ matrix phase and 〈110〉 super-dislocation inside the γ'phase. The formation of the stacking faults and (1/3)〈112〉 super-Shockleys partial dislocation configuration is attributed to the decomposition of 〈 110〉 super-dislocation in the γ' phase.
基金financial support for this work by the National Natural Science Foundation of China(Nos.51775275,51921003 and 51905363)the Funding for Outstanding Doctoral Dissertation in NUAA of China(No.BCXJ19-06)+1 种基金the Natural Science Foundation of Jiangsu Province of China(No.BK20190940)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.19KJB460008)。
文摘In this article,a grinding force model,which is on the basis of cutting process of single abrasive grains combined with the method of theoretical derivation and empirical formula by analyzing the formation mechanism of grinding force,was established.Three key factors have been taken into accounts in this model,such as the contact friction force between abrasive grains and materials,the plastic deformation of material in the process of abrasive plowing,and the shear strain effect of material during the process of cutting chips formation.The model was finally validated by the orthogonal grinding experiment of powder metallurgy nickel-based superalloy FGH96 by using the electroplated CBN abrasive wheel.Grinding force values of prediction and experiment were in good consistency.The errors of tangential grinding force and normal grinding force were 9.8%and 13.6%,respectively.The contributions of sliding force,plowing force and chip formation force were also analyzed.In addition,the tangential forces of sliding,plowing and chip formation are 14%,19%and 11%of the normal forces on average,respectively.The pro-posed grinding forcemodel is not only in favor of optimizing the grinding parameters and improving grinding efficiency,but also contributes to study some other grinding subjects(e.g.abrasive wheel wear,grinding heat,residual stress).
基金supported by the National Natural Science Foundation of China(Grant Nos.51775275 and 51921003)National Major Science and Technology Project(Grant No.2017-Ⅶ-0002-0095)+2 种基金Funding for Outstanding Doctoral Dissertation in NUAA(Grant No.BCXJ19-06)the Six Talents Summit Project in Jiangsu Province(Grant No.JXQC-002)Fundamental Research Funds for the Central Universities(Grant No.NP2018110).
文摘In this study,the machined surface quality of powder metallurgy nickel-based superalloy FGH96(similar to Rene88DT)and the grinding characteristics of brown alumina(BA)and microcrystalline alumina(MA)abrasive wheels were comparatively analyzed during creep feed grinding.The infuences of the grinding parameters(abrasive wheel speed,workpiece infeed speed,and depth of cut)on the grinding force,grinding temperature,surface roughness,surface morphology,tool wear,and grinding ratio were analyzed comprehensively.The experimental results showed that there was no significant difference in terms of the machined surface quality and grinding characteristics of FGH96 during grinding with the two types of abrasive wheels.This was mainly because the grinding advantages of the MA wheel were weakened for the difficult-to-cut FGH96 material.Moreover,both the BA and MA abrasive wheeIs exhibited severe tool wear in the form of wheel clogging and workpiece material adhesion.Finally,an analytical model for prediction of the grinding ratio was established by combining the tool wear volume,grinding force,and grinding length.The acceptable errors between the predicted and experimental grinding ratios(ranging from 0.6 to 1.8)were 7.56%and 6.31%for the BA and MA abrasive wheels,respectively.This model can be used to evaluate quantitatively the grinding performance of an alumina abrasive wheel,and is therefore helpful for optimizing the grinding parameters in the creep feed grinding process.
基金This work received financial support of the National Natural Science Foundation of China(Grant No.51805308)the China Postdoctoral Science Foundation(Grant No.2018M631189)+1 种基金the Natural Science Foundation of Shaanxi Province(No.2019JQ-303)the Wenzhou Municipal Science and Technology Foundation(No.G20180032).
文摘With a strain rate range of 0.01–10 s^(−1) and a deformation temperature range of 1110–1200℃,the isothermal compression test was performed on one powder metallurgy superalloy which is macroscopic segregation free.Using electron backscatter diffraction,the effect of strain rate and deformation temperature on grain shape and grain size of superalloys during thermal deformation was studied.The results established that exquisite and equiaxed dynamic recrystallization(DRX)grains are procured at supernal deformation temperature and high strain rate because of the high dislocation density.At the same time,the interaction between high DRX nucleation rate and low grain growth rate at high strain rate is favorable in making finer DRX grains.The equivalent medial grain size expanded with lowering strain rate and elevating proof temperature.Moreover,the grain shape was researched by the effective method of aspect ratio.Most aspect ratio of original grains is 0.61,and the aspect ratio has important implications for DRX and grain growth process.The average aspect ratio increases slightly when deformation temperature rises from 1110 to 1140℃,while the average aspect ratio increases memorably as the deformation temperature is higher than 1140℃.
文摘A modified FGH96 superalloy using 0.1 wt% graphene was successfully prepared using the wet mixing method. The interracial bonding mechanism between the graphene and the superalloy matrix was characterized using optical micro- scope, scanning electronic microscope, transmission electronic microscope and X-ray tomography. The results revealed that the graphene could be dispersed uniformly inside the matrix of the superalloy, and the bonding interface between graphene and the superalloy showed a rather diffusion instead of abrupt distinction, suggesting that the interface was formed via chemical fusion rather than a mechanical combination. The uniform dispersity of the graphene inside the superalloy matrix could improve the tensile properties significantly, including tensile strength, plasticity and yield strength. The existence of the graphene at the fracture surface further verified that the graphene could increase the effective bearing force of the material during the tensile test.