期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Organic ligand mediated evolution from superalkalis to superatomic molecules and nanowires
1
作者 Jun Li Haicai Huang +2 位作者 Jing Chen Yuxiang Bu Shibo Cheng 《Nano Research》 SCIE EI CSCD 2022年第2期1162-1170,共9页
Superatoms are considered as promising building blocks for customizing superatomic molecules and cluster-assembly nanomaterials due to their tunable electronic structures and functionalities.Electron counting rules,wh... Superatoms are considered as promising building blocks for customizing superatomic molecules and cluster-assembly nanomaterials due to their tunable electronic structures and functionalities.Electron counting rules,which mainly adjust the shell-filling of clusters,are classical strategies in designing superatoms.Here,by employing the density functional theory(DFT)calculations,we proved that the 1,4-phenylene diisocyanide(CNC_(6)H_(4)NC)ligand could dramatically reduce the adiabatic ionization potentials(AlPs)of the aluminum-based clusters,which have 39,40,and 41 valence electrons,respectively,to give rise to superalkali species without changing their shell-filling.Moreover,the rigid structure of the ligand can be used as a bridge firmly linking the same or different aluminum-based clusters to form superatomic molecules and nanowires.In particular,the bridging process was observed to enhance their nonlinear optical(NLO)responses,which can be further promoted by the oriented external electric field(OEEF).Also,the stable cluster-assembly XAl_(12)(CNC_(6)H_(4)NC)(X=Al,C,and P)nanowires were constructed,which exhibit strong absorption in the visible light region.These findings not only suggest an effective ligand-field strategy in superatom design but also unveil the geometrical and electronic evolution from the CNC_(6)H_(4)NC-based superatoms to superatomic molecules and nanomaterials. 展开更多
关键词 superatom-assembly nanomaterial density functional theory(DFT)calculation superatom networks superatomic molecule ligand-field strategy oriented external electric field
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部