Ti3C2Tx,a novel two-dimensional layer material,is widely used as electrode materials of supercapacitor due to its good metal conductivity,redox reaction active surface,and so on.However,there are many challenges to be...Ti3C2Tx,a novel two-dimensional layer material,is widely used as electrode materials of supercapacitor due to its good metal conductivity,redox reaction active surface,and so on.However,there are many challenges to be addressed which impede Ti3C2Tx obtaining the ideal specific capacitance,such as restacking,re-crushing,and oxidation of titanium.Recently,many advances have been proposed to enhance capacitance performance of Ti3C2Tx.In this review,recent strategies for improving specific capacitance are summarized and compared,for example,film formation,surface modification,and composite method.Furthermore,in order to comprehend the mechanism of those efforts,this review analyzes the energy storage performance in different electrolytes and influencing factors.This review is expected to predict redouble research direction of Ti3C2Tx materials in supercapacitors.展开更多
Supercapacitor is an imminent potential energy storage system,and acts as a booster to the batteries and fuel cells to provide necessary power density.In the last decade,carbon and carbonaceous materials,conducting po...Supercapacitor is an imminent potential energy storage system,and acts as a booster to the batteries and fuel cells to provide necessary power density.In the last decade,carbon and carbonaceous materials,conducting polymers and transition metal oxide/hydroxide based electrode materials have been made to show a remarkable electrochemical performance.Rare-earth materials have attracted significant research attention as an electrode material for supercapacitor applications based on their physicochemical properties.In this review,rare earth metals,rare earth metal oxides/hydroxides,rare-earth metal chalcogenides,rare-earth metal/carbon composites and rare-earth metal/metal oxide composites based electrode materials are discussed for supercapacitors.We also discuss the energy chemistry of rare-earth metal-based materials.Besides the factors that affect the performance of the electrode materials,their evaluation methods and supercapacitor performances are discussed in details.Finally,the future outlook in rare-earth-based electrode materials is revealed towards its current developments for supercapacitor applications.展开更多
CoTe@reduced graphene oxide(CoTe@rGO)electrode materials for supercapacitors were prepared by a one-step hydrothermal method in this paper.Compared with that of pure CoTe,the electrochemical performance of CoTe@rGO wa...CoTe@reduced graphene oxide(CoTe@rGO)electrode materials for supercapacitors were prepared by a one-step hydrothermal method in this paper.Compared with that of pure CoTe,the electrochemical performance of CoTe@rGO was significantly improved.The results showed that the optimal CoTe@rGO electrode material has a remarkably high specific capacitance of 810.6 F/g at a current density of 1 A/g.At 5 A/g,the synthesized material retained 77.2%of its initial capacitance even after 5000 charge/discharge cycles,thereby demonstrating good cycling stability.Moreover,even at a high current density of 20 A/g,the composite electrode retained 79.0%of its specific capacitance at 1 A/g,thus confirming its excellent rate performance.An asymmetric supercapacitor(ASC)with a wider potential window and higher energy density was assembled by using 3 M KOH as the electrolyte,the CoTe@rGO electrode as the positive electrode,and active carbon as the negative electrode.The operating voltage of the supercapacitor could be increased to 1.6 V,and its specific capacitance could reach 112.6 F/g at 1 A/g.The specific capacitance retention rate of the fabricated supercapacitor after 5000 charge/discharge cycles at 5 A/g was 87.1%,which confirms its excellent cycling stability.In addition,the ASC revealed a high energy density of 40.04 W·h/kg at a power density of 799.91 W/kg and a high power density of 4004.93 W/kg at an energy density of 33.43 W·h/kg.These results collectively show that CoTe@rGO materials have broad application prospects.展开更多
Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient elec...Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage.展开更多
Graphene-based composites took extensive attraction as electrodes for supercacitors these years.Three-dimensional cross-linking porous graphene(3D rGO-m)was obtained by KOH activation to graphene modified by 1,2,4-tri...Graphene-based composites took extensive attraction as electrodes for supercacitors these years.Three-dimensional cross-linking porous graphene(3D rGO-m)was obtained by KOH activation to graphene modified by 1,2,4-triaminobenzene.3D porous graphene/polyaniline hybrids(3D rGO-m/PANI)was prepared by the in-situ chemical oxidative polymerization.The rGO-m are reconstructed from 2D to 3D porous structure after KOH activation.The PANI nanorod arrays are successfully decorated on the surface of the 3D porous graphene sheets.The specific capacitance of the 3D rGO-m/PANI hybrids reach 985 F/g at 0.5 A/g.The capacitance retention of 3D rGO-m/PANI maintains 90%of its initial capacity after 1000 cycles,while rGO-m/PANI only keeps 83%of its initial capacity,the cycling stability of both hybrids are higher than that of pure PANI(69%).展开更多
Taking the nano-sized carbon black and aniline monomer as precursor and (NH4)2S2O6 as oxidant, the well coated C/polyaniline(C/PANI) composite materials were prepared by in situ polymerization of the aniline on th...Taking the nano-sized carbon black and aniline monomer as precursor and (NH4)2S2O6 as oxidant, the well coated C/polyaniline(C/PANI) composite materials were prepared by in situ polymerization of the aniline on the surface of well-dispersed nano-sized carbon black for supercapacitor. The micro-structure of the C/PANI composite electrode materials were analyzed by SEM. The electrochemical properties of C/ PANI and PANI composite electrode were characterized by means of the galvanostatic charge-discharge experiment, cyclic voltammetric measurement and impedance spectroscopy analysis. The results show that by adding the nano-sized carbon black in the process of chemical polymerization of the aniline, the polyaniline can be in situ polymerized and well-coated onto the carbon black particles, which may effectively improve the aggregation of particles and the electrolyte penetration. What’s more , the maximum of specific capacitance of C/PANI electrode 437.6F·g -1 can be attained. Compared with PANI electrode, C/PANI electrode shows more desired capacitance characteristics, smaller internal resistance and better cycle performance.展开更多
Supercapacitors are expected to bridge the gap between conventional electrostatic capacitors and batteries, but have not found significant application in primary energy devices, partly due to some unsolved problems in...Supercapacitors are expected to bridge the gap between conventional electrostatic capacitors and batteries, but have not found significant application in primary energy devices, partly due to some unsolved problems in the elec- trode materials. A wide range of novel materials such as novel carbons have been investigated to increase the energy den- sity of the electrodes and the volumetric merits of the materi- als need to be specifically considered and evaluated, towards the practical application of these novel materials. In obser- vation of the intense research activity to improve the volu- metric performance of carbon electrodes, the density or mass loading is particularly important and shall be further opti- mized, both for commercially applied activated carbons and in novel carbon electrode materials such as graphene. In this review, we presented a brief overview of the recent progress in improving the volumetric performance of carbon-based su- percapacitor electrodes, particularly highlighting the devel- opment of densified electrodes by various technical strategies including the controlled assembly of carbon building blocks, developing carbon based hybrid composites and constructing micro- supercapacitors.展开更多
Exploring new materials with high stability and capacity is full of challenges in sustainable energy conversion and storage systems.Metal-organic frameworks(MOFs),as a new type of porous material,show the advantages o...Exploring new materials with high stability and capacity is full of challenges in sustainable energy conversion and storage systems.Metal-organic frameworks(MOFs),as a new type of porous material,show the advantages of large specific surface area,high porosity,low density,and adjustable pore size,exhibiting a broad application prospect in the field of electrocatalytic reactions,batteries,particularly in the field of supercapacitors.This comprehensive review outlines the recent progress in synthetic methods and electrochemical performances of MOF materials,as well as their applications in supercapacitors.Additionally,the superiorities of MOFs-related materials are highlighted,while major challenges or opportunities for future research on them for electrochemical supercapacitors have been discussed and displayed,along with extensive experimental experiences.展开更多
A novel bird nest-like nanostructured MnO2(BNNS-MnO2) was prepared by a facile and cost-effective strategy. Their structures and morphologies were characterized by field emission scanning electron microscopy, transmis...A novel bird nest-like nanostructured MnO2(BNNS-MnO2) was prepared by a facile and cost-effective strategy. Their structures and morphologies were characterized by field emission scanning electron microscopy, transmission electron microscopy and powder X-ray diffraction. Capacitive behaviors were investigated by cyclic voltammetry and galvanostatic charge-discharge. The obtained nano-MnO2 possesses a well designed loose-assembled hierarchical nanoarchitecture with an appropriate crystallinity which gives rise to excellent performances as an electrode material for supercapacitors. A maximum specific capacitance of 917 F/g has been obtained at a current density of 5 mA/cm2 in 6 mol/L KOH aqueous solution, and a specific capacitance of 210 F/g has been maintained for 500 cycles. As the low cost of MnSO4 and KCr2O7 and the low reaction temperature, the present method avoids the requirements for complicated operations, time/energy-consuming and expensive reagents, and perhaps is ready for the industrialization of nano-MnO2 production.展开更多
Effective heat dissipation is a crucial issue in electrochemical energy storage devices. Thus, it is highly desirable to develop high-performance electrode materials with high thermal conductivity. Here, we report a f...Effective heat dissipation is a crucial issue in electrochemical energy storage devices. Thus, it is highly desirable to develop high-performance electrode materials with high thermal conductivity. Here, we report a facile one-step electrodeposition method to synthesize ternary cobalt nickel sulfide(CoNi2S4)flower-like nanosheets which are grown on graphite foil(GF) as binder-free electrode materials for supercapacitors. The as-fabricated GF/CoNi2S4 integrated electrode manifested an excellent thermal conductivity of 620.1 W·m-1·K-1 and a high specific capacitance of 881 F·g-2 at 5 mA cm-2, as well as good rate capability and cycling stability. Ultimately, the all-solid-state symmetric supercapacitor based on these advanced electrodes demonstrated superior heat dissipation performance during the galvanostatic charge-discharge processes. This novel strategy provides a new example of effective thermal management for potential applications in energy storage devices.展开更多
Portable electrical power sources play increasingly vital roles in our daily lives due to the widespread use of mobile electronic devices and electrical vehicles.Electrochemical capacitors,also referred as supercapaci...Portable electrical power sources play increasingly vital roles in our daily lives due to the widespread use of mobile electronic devices and electrical vehicles.Electrochemical capacitors,also referred as supercapacitors(SCs)or ultracapacitors,are an important type of energy storage system with superior advantages of rapid power delivery and recharging compared to other types of energy storage systems.In practice,SCs have played im-展开更多
Nanostructured porous polyaniline(PANI)has been synthesized and coated simultaneously on a highly flexible and conductive carbon cloth(CC)substrate using a simple in-situ chemical oxidative polymerization technique.PA...Nanostructured porous polyaniline(PANI)has been synthesized and coated simultaneously on a highly flexible and conductive carbon cloth(CC)substrate using a simple in-situ chemical oxidative polymerization technique.PANI coated CC(PANI-CC)based flexible electrodes were further used for the fabrication of flexible supercapacitor devices.For the comparison purpose,pure PANI has also been synthesized and tested for its electrochemical performance.The energy storage capacity of PANI and PANI–CC composite was investigated using electrochemical techniques like CV,GCD,and EIS in a potential range from 0 to 0.8 V in 1 M H_(2)SO_(4)electrolyte.PANI-CC flexible electrodes exhibited the highest specific capacitance of 691 F/g;whereas,pure PANI could only achieve 575 F/g of specific capacitance at 1 A/g.Composite also exhibited outstanding cyclic stability by recollecting 94%of its initial capacitance after 2000 GCD cycles.For actual implementation,a flexible supercapacitor device has been fabricated using stainless steel sheets and PANI-CC flexile electrodes.The energy storage performance of the PANI-CC flexible supercapacitor device was tested at several bending angles,which resulted in 72%of capacitance retention at a maximum bending angle of 140°compared to the capacitance obtained at an angle 0°(flat state).PANI-CC exhibited improved electrochemical performance than pure PANI due to the synergistic effect between PANI and CC.Here,CC helped in enhancing the conductivity and stability;whereas,PANI boosted the capacitance owing to its excellent porosity and fast pseudocapacitive charge storage response.展开更多
As one of the promising energy storage and conversion systems,supercapacitors(SCs)are highly favored owing to their high power density and good service life.Among all the key components of supercapacitor devices,the d...As one of the promising energy storage and conversion systems,supercapacitors(SCs)are highly favored owing to their high power density and good service life.Among all the key components of supercapacitor devices,the design and investigation of electrode materials play an essential role in determining the whole electrochemical charge storage performance.Recently,nanocarbon-based materials(e.g.,graphene,carbon dots,graphene quantum dots,etc.)have been widely used as SC electrode materials because of their good physical structure and chemical properties,providing a new route to further improve the energy density and life span of SCs.Here,we review the latest progress of nanocarbon-based materials(including nanocarbon and nanocarbon-based composite materials)as electrode materials in SCs application.The recent progress of carbon dots,graphene,carbon nanotubes,and other nanocarbon materials electrodes is summarized,while the capacitance and energy density of the above nanocarbon electrodes still need to be improved.Then,the preparation and performance of nanocarbonbased composite electrodes comprising transition metal oxides,conductive polymer,and metal-organic framework derived porous carbon are reviewed.Finally,we outline major challenges and propose some ideas on building better nanocarbon-based SC electrodes.展开更多
As one of new electrical energy storage systems, supercapacitors possess higher energy density than conventional capacitors and larger power density than batteries, integrating substantial merits with high energy, lar...As one of new electrical energy storage systems, supercapacitors possess higher energy density than conventional capacitors and larger power density than batteries, integrating substantial merits with high energy, large power delivery, long cycle life, obvious safety, and low cost. However, the unsatisfying energy density is the inhabiting issue for the wide commercial applications. As the energy density(E, W h kg?1) is directly proportional to specific capacitance(C, F g?1) and the square of operating voltage(V, V), in this review, we summarize the recent progress in two sections: the exploration of high-performance electrode materials to achieve high specific capacitance and the construction of high-voltage supercapacitor systems for high working voltage. The progressive explorations and developments in supercapacitors could guide the future research towards high-performance, low-cost, and safe energy storage devices.展开更多
In this work, Al-substituted a-Co(OH)2/GO composites with supercapacitive properties were prepared by chemical co-precipitated method in which cobalt nitrate and aluminum nitrate were used as the raw material, and g...In this work, Al-substituted a-Co(OH)2/GO composites with supercapacitive properties were prepared by chemical co-precipitated method in which cobalt nitrate and aluminum nitrate were used as the raw material, and graphite oxide was employed as carrier. The as-prepared materials were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and fourier transform infrared spectroscopy (FF-IR). Cyclic voltammetry (CV) and galvanostatic charge/discharge measurements showed that the Al-substituted a-Co(OH)2/GO electrode material had excellent electrochemical capacitance. The specific capacitance of 1137 F·g-11 was achieved in 6 mol/L KOH solution at a current density of 1 A·g-1 within a potential range of 0-0.5 V. Moreover, only 12% losses of the initial specific capacitance were found after 500 cycles at a current density of 1 A·g-1.展开更多
For high performance supercapacitors, novel hierarchical yolk-shell α-Ni(OH)_(2)/Mn_(2)O_(3) microspheres were controllably synthesized using a facile two-step method based on the solvothermal treatment. The unique ...For high performance supercapacitors, novel hierarchical yolk-shell α-Ni(OH)_(2)/Mn_(2)O_(3) microspheres were controllably synthesized using a facile two-step method based on the solvothermal treatment. The unique α-Ni(OH)_(2) based yolk-shell microstructures decorated with numerous interconnected nanosheets and the heterocomposition features can synergistically enhance reactive site exposure and electron conduction within the microspheres, facilitate charge transfer between electrolyte and electrode materials, and release structural stress during OH− chemisorption/desorption. Moreover, the Mn2O3 sediments distributed over the α-Ni(OH)_(2) microspheres can serve as an effective protective layer for electrochemical reactions. Consequently, when tested in 1 mol·L^(−1) KOH aqueous electrolyte for supercapacitors, the yolk-shell α-Ni (OH)_(2)/Mn_(2)O_(3) microspheres exhibited a considerably high specific capacitance of 2228.6 F·g^(−1) at 1 A·g^(−1) and an impressive capacitance retention of 77.7% after 3000 cycles at 10 A·g^(−1). The proposed α-Ni(OH)_(2)/Mn_(2)O_(3) microspheres with hetero-composition and unique hierarchical yolk-shell microstructures are highly promising to be used as electrode materials in supercapacitors and other energy storage devices.展开更多
A significant challenge in developing high-performance hybrid supercapacitors(HSCs)is the need to reasonably construct advanced architectures that consist of various components and exhibit superior electrochemical cap...A significant challenge in developing high-performance hybrid supercapacitors(HSCs)is the need to reasonably construct advanced architectures that consist of various components and exhibit superior electrochemical capacitance performance.The FeCoNi-layered double hydroxide(FeCoNi-LDH)porous material has a specific capacitance of 1960 F·g^(-1)when used as the anode material at 1 A·g^(-1).The FeCoNi-LDH material exhibits nanoplates with a distinct spindle morphology on their surface.Due to the combined action of the three metals and abundant oxygen vacancies,they exhibit unique rate performance and cycle stability.The electronic structure of LDH and the regulation of oxygen vacancy were confirmed by density functional theory(DFT)calculations.This suggests that the strength of hydroxide can reduce the energy required for oxygen vacancy formation in FeCoNi-LDH nanosheets and enhance ion and charge transfer,as well as electrolyte adsorption on the electrode surface.The FeCoNi-LDH//activated carbon(AC)HSC has an energy density of 53.2 Wh·kg^(-1)at a power density of 800 W·kg^(-1),surpassing other devices composed of comparable materials during the same timeframe.This study made significant advances in the design and synthesis of a ternary LDH porous structure with distinct oxygen vacancies,as well as its potential application in electrochemical energy storage.展开更多
Owing to the dramatically enhanced charge-mass transport and abundant electrochemically active sites,transition metal compound electrodes are increasingly attractive for achieving high-performance supercapacitors(SCs)...Owing to the dramatically enhanced charge-mass transport and abundant electrochemically active sites,transition metal compound electrodes are increasingly attractive for achieving high-performance supercapacitors(SCs).Here,we report the fabrication of nickel foam supported three-dimensional(3 D)branched nickel-cobalt phosphides@tri-metal cobalt-nickel-molybdenum phosphides core/shell nanowire heterostructures(denoted as NiCo-P@CoNiMo-P)as high-performance electrode materials for hybrid supercapacitors.The presence of multiple valences of the cations in such NiCo-P@CoNiMo-P enables rich redox reactions and promoted synergy effects.Benefiting from their collective effects,the resulting electrode demonstrates high specific capacity of 1366 C g^(-1) at 2 A g^(-1)(2.03 C cm^(-2) at2 mA cm^(-2))and 922 C g^(-1) at 10 A g^(-1),as well as good cycling stability(retaining~94%of the initial capacity after 6000 cycles at 15 A g^(-1)).A hybrid SC using the NiCo-P@CoNiMo-P as the positive electrode and N-doped rGOs as the negative electrode exhibits a high energy density of 81.4 Wh kg^(-1) at a power density of 1213 W kg^(-1) and a capacity retention of 132%even after 6000 cycles at 10 A g^(-1).Our findings can facilitate the material design for boosting the performance of transition metal compounds based materials for fast energy storage.展开更多
LiAlxMn2-xO4 (0≤x≤0.5) was synthesized by high temperature solid-state reaction. The structure and morphology of LiAlxMn2-xO4 were investigated by X-ray diffraction and scanning electron microscopy (SEM). The re...LiAlxMn2-xO4 (0≤x≤0.5) was synthesized by high temperature solid-state reaction. The structure and morphology of LiAlxMn2-xO4 were investigated by X-ray diffraction and scanning electron microscopy (SEM). The results indicate that all samples show spinel phase. The polyhedral particles turn to club-shaped, then change to small spherical, and finally become agglomerates with increasing Al content. The supercapacitive performances of LiAlxMn2-xO4 were studied by means of galvanostatic charge-discharge, cyclic voltammetry, and alternating current (AC) impedance in 2 mol·L^-1 (NH4)2SO4 aqueous solution. The results show that LiAlxMn2-xO4 represents rectangular shape performance in the potential range of 0-1 V. The capacity and cycle performance can be improved by doping Al. The composition of x=0.1 has the maximum special capacitance of 160 F·g^-1, which is 1.37 times that of LiMn2O4 electrode. The capacitance loss of LiAlxMn2-xO4 with x=0.1 is only about 14% after 100 cycles.展开更多
基金National Natural Science Foundation of China with Grant No.21905304Natural Science Foundation of Shandong Province(No.ZR2019BEM031)the Fundamental Research Funds for the Central Universities(Nos.18CX02158A and 19CX05001A).
文摘Ti3C2Tx,a novel two-dimensional layer material,is widely used as electrode materials of supercapacitor due to its good metal conductivity,redox reaction active surface,and so on.However,there are many challenges to be addressed which impede Ti3C2Tx obtaining the ideal specific capacitance,such as restacking,re-crushing,and oxidation of titanium.Recently,many advances have been proposed to enhance capacitance performance of Ti3C2Tx.In this review,recent strategies for improving specific capacitance are summarized and compared,for example,film formation,surface modification,and composite method.Furthermore,in order to comprehend the mechanism of those efforts,this review analyzes the energy storage performance in different electrolytes and influencing factors.This review is expected to predict redouble research direction of Ti3C2Tx materials in supercapacitors.
基金the funding for this project through the National Nature Science Foundations of China(Grant No.51873083)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(No.sklpme2018-4-27)+1 种基金Key University Science Research Project of Jiangsu Province(18KJA130001)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX18_0759,SJCX19_0584)。
文摘Supercapacitor is an imminent potential energy storage system,and acts as a booster to the batteries and fuel cells to provide necessary power density.In the last decade,carbon and carbonaceous materials,conducting polymers and transition metal oxide/hydroxide based electrode materials have been made to show a remarkable electrochemical performance.Rare-earth materials have attracted significant research attention as an electrode material for supercapacitor applications based on their physicochemical properties.In this review,rare earth metals,rare earth metal oxides/hydroxides,rare-earth metal chalcogenides,rare-earth metal/carbon composites and rare-earth metal/metal oxide composites based electrode materials are discussed for supercapacitors.We also discuss the energy chemistry of rare-earth metal-based materials.Besides the factors that affect the performance of the electrode materials,their evaluation methods and supercapacitor performances are discussed in details.Finally,the future outlook in rare-earth-based electrode materials is revealed towards its current developments for supercapacitor applications.
基金supported by the National Natural Science Foundation of China(No.51877146)。
文摘CoTe@reduced graphene oxide(CoTe@rGO)electrode materials for supercapacitors were prepared by a one-step hydrothermal method in this paper.Compared with that of pure CoTe,the electrochemical performance of CoTe@rGO was significantly improved.The results showed that the optimal CoTe@rGO electrode material has a remarkably high specific capacitance of 810.6 F/g at a current density of 1 A/g.At 5 A/g,the synthesized material retained 77.2%of its initial capacitance even after 5000 charge/discharge cycles,thereby demonstrating good cycling stability.Moreover,even at a high current density of 20 A/g,the composite electrode retained 79.0%of its specific capacitance at 1 A/g,thus confirming its excellent rate performance.An asymmetric supercapacitor(ASC)with a wider potential window and higher energy density was assembled by using 3 M KOH as the electrolyte,the CoTe@rGO electrode as the positive electrode,and active carbon as the negative electrode.The operating voltage of the supercapacitor could be increased to 1.6 V,and its specific capacitance could reach 112.6 F/g at 1 A/g.The specific capacitance retention rate of the fabricated supercapacitor after 5000 charge/discharge cycles at 5 A/g was 87.1%,which confirms its excellent cycling stability.In addition,the ASC revealed a high energy density of 40.04 W·h/kg at a power density of 799.91 W/kg and a high power density of 4004.93 W/kg at an energy density of 33.43 W·h/kg.These results collectively show that CoTe@rGO materials have broad application prospects.
基金supported by National Undergraduate Training Programs for Innovations[grant number 202210225259]the Outstanding Youth Project of Natural Science Foundation in Heilongjiang Province(YQ2022E040)+3 种基金the Shandong Provincial Natural Science Foundation(ZR2022ME166)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q20023)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020197)the 111 Project(B20088).
文摘Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage.
基金This work was financially supported by the Program of National Natural Science Foundation of China(No.51472166)Liaoning BaiQianWan Talents program.
文摘Graphene-based composites took extensive attraction as electrodes for supercacitors these years.Three-dimensional cross-linking porous graphene(3D rGO-m)was obtained by KOH activation to graphene modified by 1,2,4-triaminobenzene.3D porous graphene/polyaniline hybrids(3D rGO-m/PANI)was prepared by the in-situ chemical oxidative polymerization.The rGO-m are reconstructed from 2D to 3D porous structure after KOH activation.The PANI nanorod arrays are successfully decorated on the surface of the 3D porous graphene sheets.The specific capacitance of the 3D rGO-m/PANI hybrids reach 985 F/g at 0.5 A/g.The capacitance retention of 3D rGO-m/PANI maintains 90%of its initial capacity after 1000 cycles,while rGO-m/PANI only keeps 83%of its initial capacity,the cycling stability of both hybrids are higher than that of pure PANI(69%).
基金Project(2005CB623703) supported by the National Basic Research Program of China project(5JJ30103) supported bythe Natural Science Foundation of Hunan Province
文摘Taking the nano-sized carbon black and aniline monomer as precursor and (NH4)2S2O6 as oxidant, the well coated C/polyaniline(C/PANI) composite materials were prepared by in situ polymerization of the aniline on the surface of well-dispersed nano-sized carbon black for supercapacitor. The micro-structure of the C/PANI composite electrode materials were analyzed by SEM. The electrochemical properties of C/ PANI and PANI composite electrode were characterized by means of the galvanostatic charge-discharge experiment, cyclic voltammetric measurement and impedance spectroscopy analysis. The results show that by adding the nano-sized carbon black in the process of chemical polymerization of the aniline, the polyaniline can be in situ polymerized and well-coated onto the carbon black particles, which may effectively improve the aggregation of particles and the electrolyte penetration. What’s more , the maximum of specific capacitance of C/PANI electrode 437.6F·g -1 can be attained. Compared with PANI electrode, C/PANI electrode shows more desired capacitance characteristics, smaller internal resistance and better cycle performance.
基金supported by the Chinese Government 1000 Plan Talent Programthe Ministry of Education's Program for New Century Excellent Talents in the University+2 种基金the National Natural Science Foundation of China(51322204)the Fundamental Research Funds for Central Universities(WK2060140014 and WK2060140017)the funding from Hefei National Synchrotron Radiation Lab
文摘Supercapacitors are expected to bridge the gap between conventional electrostatic capacitors and batteries, but have not found significant application in primary energy devices, partly due to some unsolved problems in the elec- trode materials. A wide range of novel materials such as novel carbons have been investigated to increase the energy den- sity of the electrodes and the volumetric merits of the materi- als need to be specifically considered and evaluated, towards the practical application of these novel materials. In obser- vation of the intense research activity to improve the volu- metric performance of carbon electrodes, the density or mass loading is particularly important and shall be further opti- mized, both for commercially applied activated carbons and in novel carbon electrode materials such as graphene. In this review, we presented a brief overview of the recent progress in improving the volumetric performance of carbon-based su- percapacitor electrodes, particularly highlighting the devel- opment of densified electrodes by various technical strategies including the controlled assembly of carbon building blocks, developing carbon based hybrid composites and constructing micro- supercapacitors.
基金supported by the National Natural Science Foundation of China(52004338,51622406,21673298)Scientific Research Fund of Hunan Provincial Education Department(21B0017).
文摘Exploring new materials with high stability and capacity is full of challenges in sustainable energy conversion and storage systems.Metal-organic frameworks(MOFs),as a new type of porous material,show the advantages of large specific surface area,high porosity,low density,and adjustable pore size,exhibiting a broad application prospect in the field of electrocatalytic reactions,batteries,particularly in the field of supercapacitors.This comprehensive review outlines the recent progress in synthetic methods and electrochemical performances of MOF materials,as well as their applications in supercapacitors.Additionally,the superiorities of MOFs-related materials are highlighted,while major challenges or opportunities for future research on them for electrochemical supercapacitors have been discussed and displayed,along with extensive experimental experiences.
基金supported by the National Natural Science Foundation of China (51203071,51363014 and 21163010)the Key Project of Chinese Ministry of Education (212183)+1 种基金the Program for Hongliu Young Teachers in Lanzhou University of Technology (201201)the Natural Science Funds for Distinguished Young Scholars of Gansu Province (1111RJDA012)
文摘A novel bird nest-like nanostructured MnO2(BNNS-MnO2) was prepared by a facile and cost-effective strategy. Their structures and morphologies were characterized by field emission scanning electron microscopy, transmission electron microscopy and powder X-ray diffraction. Capacitive behaviors were investigated by cyclic voltammetry and galvanostatic charge-discharge. The obtained nano-MnO2 possesses a well designed loose-assembled hierarchical nanoarchitecture with an appropriate crystallinity which gives rise to excellent performances as an electrode material for supercapacitors. A maximum specific capacitance of 917 F/g has been obtained at a current density of 5 mA/cm2 in 6 mol/L KOH aqueous solution, and a specific capacitance of 210 F/g has been maintained for 500 cycles. As the low cost of MnSO4 and KCr2O7 and the low reaction temperature, the present method avoids the requirements for complicated operations, time/energy-consuming and expensive reagents, and perhaps is ready for the industrialization of nano-MnO2 production.
基金financially supported by the National Natural Science Foundation of China (21203236)Shenzhen Peacock Plan (KQCX2015033117354154)+1 种基金Shenzhen basic research plan (JCYJ2015052114432090)the Science & Technology Project of Educational Commission of Jiangxi Province, China (GJJ161198)
文摘Effective heat dissipation is a crucial issue in electrochemical energy storage devices. Thus, it is highly desirable to develop high-performance electrode materials with high thermal conductivity. Here, we report a facile one-step electrodeposition method to synthesize ternary cobalt nickel sulfide(CoNi2S4)flower-like nanosheets which are grown on graphite foil(GF) as binder-free electrode materials for supercapacitors. The as-fabricated GF/CoNi2S4 integrated electrode manifested an excellent thermal conductivity of 620.1 W·m-1·K-1 and a high specific capacitance of 881 F·g-2 at 5 mA cm-2, as well as good rate capability and cycling stability. Ultimately, the all-solid-state symmetric supercapacitor based on these advanced electrodes demonstrated superior heat dissipation performance during the galvanostatic charge-discharge processes. This novel strategy provides a new example of effective thermal management for potential applications in energy storage devices.
文摘Portable electrical power sources play increasingly vital roles in our daily lives due to the widespread use of mobile electronic devices and electrical vehicles.Electrochemical capacitors,also referred as supercapacitors(SCs)or ultracapacitors,are an important type of energy storage system with superior advantages of rapid power delivery and recharging compared to other types of energy storage systems.In practice,SCs have played im-
基金the research grant obtained from the Government of India,Under the DST-Nanomission program(No.SR/NM/NS-1110/2012)the DST-Inspire program(IFA12-PH-33)。
文摘Nanostructured porous polyaniline(PANI)has been synthesized and coated simultaneously on a highly flexible and conductive carbon cloth(CC)substrate using a simple in-situ chemical oxidative polymerization technique.PANI coated CC(PANI-CC)based flexible electrodes were further used for the fabrication of flexible supercapacitor devices.For the comparison purpose,pure PANI has also been synthesized and tested for its electrochemical performance.The energy storage capacity of PANI and PANI–CC composite was investigated using electrochemical techniques like CV,GCD,and EIS in a potential range from 0 to 0.8 V in 1 M H_(2)SO_(4)electrolyte.PANI-CC flexible electrodes exhibited the highest specific capacitance of 691 F/g;whereas,pure PANI could only achieve 575 F/g of specific capacitance at 1 A/g.Composite also exhibited outstanding cyclic stability by recollecting 94%of its initial capacitance after 2000 GCD cycles.For actual implementation,a flexible supercapacitor device has been fabricated using stainless steel sheets and PANI-CC flexile electrodes.The energy storage performance of the PANI-CC flexible supercapacitor device was tested at several bending angles,which resulted in 72%of capacitance retention at a maximum bending angle of 140°compared to the capacitance obtained at an angle 0°(flat state).PANI-CC exhibited improved electrochemical performance than pure PANI due to the synergistic effect between PANI and CC.Here,CC helped in enhancing the conductivity and stability;whereas,PANI boosted the capacitance owing to its excellent porosity and fast pseudocapacitive charge storage response.
基金financially supported by the National Natural Science Foundation of China (Nos.52172033 and 22005280)Anhui Province Key Research and Development Plan Project International Science and Technology Cooperation Special Project (No.202004b11020015)
文摘As one of the promising energy storage and conversion systems,supercapacitors(SCs)are highly favored owing to their high power density and good service life.Among all the key components of supercapacitor devices,the design and investigation of electrode materials play an essential role in determining the whole electrochemical charge storage performance.Recently,nanocarbon-based materials(e.g.,graphene,carbon dots,graphene quantum dots,etc.)have been widely used as SC electrode materials because of their good physical structure and chemical properties,providing a new route to further improve the energy density and life span of SCs.Here,we review the latest progress of nanocarbon-based materials(including nanocarbon and nanocarbon-based composite materials)as electrode materials in SCs application.The recent progress of carbon dots,graphene,carbon nanotubes,and other nanocarbon materials electrodes is summarized,while the capacitance and energy density of the above nanocarbon electrodes still need to be improved.Then,the preparation and performance of nanocarbonbased composite electrodes comprising transition metal oxides,conductive polymer,and metal-organic framework derived porous carbon are reviewed.Finally,we outline major challenges and propose some ideas on building better nanocarbon-based SC electrodes.
基金supported by the National Natural Science Foundation of China(Grant Nos.51572129&U1407106)Natural Science Foundation of Jiangsu Province(Grant No.BK20131349)+1 种基金A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Fundamental Research Funds for the Central Universities(Grant No.30915011204)
文摘As one of new electrical energy storage systems, supercapacitors possess higher energy density than conventional capacitors and larger power density than batteries, integrating substantial merits with high energy, large power delivery, long cycle life, obvious safety, and low cost. However, the unsatisfying energy density is the inhabiting issue for the wide commercial applications. As the energy density(E, W h kg?1) is directly proportional to specific capacitance(C, F g?1) and the square of operating voltage(V, V), in this review, we summarize the recent progress in two sections: the exploration of high-performance electrode materials to achieve high specific capacitance and the construction of high-voltage supercapacitor systems for high working voltage. The progressive explorations and developments in supercapacitors could guide the future research towards high-performance, low-cost, and safe energy storage devices.
基金Project supported by the National Natural Science Foundation of China (Nos. 20963009, 21163017), Gansu Science and Technology Committee (No. 0803RJA005) and the postgraduate advisor program of Provincial Education Department of Gansu.
文摘In this work, Al-substituted a-Co(OH)2/GO composites with supercapacitive properties were prepared by chemical co-precipitated method in which cobalt nitrate and aluminum nitrate were used as the raw material, and graphite oxide was employed as carrier. The as-prepared materials were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and fourier transform infrared spectroscopy (FF-IR). Cyclic voltammetry (CV) and galvanostatic charge/discharge measurements showed that the Al-substituted a-Co(OH)2/GO electrode material had excellent electrochemical capacitance. The specific capacitance of 1137 F·g-11 was achieved in 6 mol/L KOH solution at a current density of 1 A·g-1 within a potential range of 0-0.5 V. Moreover, only 12% losses of the initial specific capacitance were found after 500 cycles at a current density of 1 A·g-1.
基金the National Natural Science Foundation of China(Grant Nos.21908037,91834301)the Fundamental Research Funds for the Central Universities of China(Grant No.JZ2019HGBZ0147).
文摘For high performance supercapacitors, novel hierarchical yolk-shell α-Ni(OH)_(2)/Mn_(2)O_(3) microspheres were controllably synthesized using a facile two-step method based on the solvothermal treatment. The unique α-Ni(OH)_(2) based yolk-shell microstructures decorated with numerous interconnected nanosheets and the heterocomposition features can synergistically enhance reactive site exposure and electron conduction within the microspheres, facilitate charge transfer between electrolyte and electrode materials, and release structural stress during OH− chemisorption/desorption. Moreover, the Mn2O3 sediments distributed over the α-Ni(OH)_(2) microspheres can serve as an effective protective layer for electrochemical reactions. Consequently, when tested in 1 mol·L^(−1) KOH aqueous electrolyte for supercapacitors, the yolk-shell α-Ni (OH)_(2)/Mn_(2)O_(3) microspheres exhibited a considerably high specific capacitance of 2228.6 F·g^(−1) at 1 A·g^(−1) and an impressive capacitance retention of 77.7% after 3000 cycles at 10 A·g^(−1). The proposed α-Ni(OH)_(2)/Mn_(2)O_(3) microspheres with hetero-composition and unique hierarchical yolk-shell microstructures are highly promising to be used as electrode materials in supercapacitors and other energy storage devices.
基金supported by the National Natural Science Foundation of China(Nos.22274147 and 22274146)the High Technology Industrialization Special of Science and Technology Cooperation of Jilin Province and the Chinese Academy of Sciences(No.2022SYHZ0029).
文摘A significant challenge in developing high-performance hybrid supercapacitors(HSCs)is the need to reasonably construct advanced architectures that consist of various components and exhibit superior electrochemical capacitance performance.The FeCoNi-layered double hydroxide(FeCoNi-LDH)porous material has a specific capacitance of 1960 F·g^(-1)when used as the anode material at 1 A·g^(-1).The FeCoNi-LDH material exhibits nanoplates with a distinct spindle morphology on their surface.Due to the combined action of the three metals and abundant oxygen vacancies,they exhibit unique rate performance and cycle stability.The electronic structure of LDH and the regulation of oxygen vacancy were confirmed by density functional theory(DFT)calculations.This suggests that the strength of hydroxide can reduce the energy required for oxygen vacancy formation in FeCoNi-LDH nanosheets and enhance ion and charge transfer,as well as electrolyte adsorption on the electrode surface.The FeCoNi-LDH//activated carbon(AC)HSC has an energy density of 53.2 Wh·kg^(-1)at a power density of 800 W·kg^(-1),surpassing other devices composed of comparable materials during the same timeframe.This study made significant advances in the design and synthesis of a ternary LDH porous structure with distinct oxygen vacancies,as well as its potential application in electrochemical energy storage.
基金supported by the National Natural Science Foundation of China(Grants Nos.52072323 and 51872098)the Leading Project Foundation of Science Department of Fujian Province(Grants No.2018H0034)+1 种基金the“Double-First Class”Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen Universitythe financial support from the Opening Project of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials,&Henan Key Laboratory of High-temperature Structural and Functional Materials,Henan University of Science and Technology(Grants No.HKDNM2019013)。
文摘Owing to the dramatically enhanced charge-mass transport and abundant electrochemically active sites,transition metal compound electrodes are increasingly attractive for achieving high-performance supercapacitors(SCs).Here,we report the fabrication of nickel foam supported three-dimensional(3 D)branched nickel-cobalt phosphides@tri-metal cobalt-nickel-molybdenum phosphides core/shell nanowire heterostructures(denoted as NiCo-P@CoNiMo-P)as high-performance electrode materials for hybrid supercapacitors.The presence of multiple valences of the cations in such NiCo-P@CoNiMo-P enables rich redox reactions and promoted synergy effects.Benefiting from their collective effects,the resulting electrode demonstrates high specific capacity of 1366 C g^(-1) at 2 A g^(-1)(2.03 C cm^(-2) at2 mA cm^(-2))and 922 C g^(-1) at 10 A g^(-1),as well as good cycling stability(retaining~94%of the initial capacity after 6000 cycles at 15 A g^(-1)).A hybrid SC using the NiCo-P@CoNiMo-P as the positive electrode and N-doped rGOs as the negative electrode exhibits a high energy density of 81.4 Wh kg^(-1) at a power density of 1213 W kg^(-1) and a capacity retention of 132%even after 6000 cycles at 10 A g^(-1).Our findings can facilitate the material design for boosting the performance of transition metal compounds based materials for fast energy storage.
基金supported by the Ph.D. Program Foundation of the Ministry of Education of China (No.20050217019)
文摘LiAlxMn2-xO4 (0≤x≤0.5) was synthesized by high temperature solid-state reaction. The structure and morphology of LiAlxMn2-xO4 were investigated by X-ray diffraction and scanning electron microscopy (SEM). The results indicate that all samples show spinel phase. The polyhedral particles turn to club-shaped, then change to small spherical, and finally become agglomerates with increasing Al content. The supercapacitive performances of LiAlxMn2-xO4 were studied by means of galvanostatic charge-discharge, cyclic voltammetry, and alternating current (AC) impedance in 2 mol·L^-1 (NH4)2SO4 aqueous solution. The results show that LiAlxMn2-xO4 represents rectangular shape performance in the potential range of 0-1 V. The capacity and cycle performance can be improved by doping Al. The composition of x=0.1 has the maximum special capacitance of 160 F·g^-1, which is 1.37 times that of LiMn2O4 electrode. The capacitance loss of LiAlxMn2-xO4 with x=0.1 is only about 14% after 100 cycles.