A nanocomposite of nickel oxide/carbon nanotubes was prepared through a simple chemical precipitation followed by thermal annealing. The electrochemical capacitance of this electrode material was studied. When the mas...A nanocomposite of nickel oxide/carbon nanotubes was prepared through a simple chemical precipitation followed by thermal annealing. The electrochemical capacitance of this electrode material was studied. When the mass fraction of CNTs (carbon nanotubes) in NiO/CNT composites increases, the electrical resistivity of nanocomposites decreases and becomes similar to that of pure CNTs when it reaches 30%. The specific surface area of composites increases with increasing CNT mass fraction and the specific capacitance reaches 160 F/g under 10 mA/g discharge current density at CNT mass fraction of 10%.展开更多
Taking the selection of coal-tar pitch as precursor and KOH as activated agent, the activated carbon electrode material was fabricated for supercapacitor.The surface area and the pore structure of activated carbon wer...Taking the selection of coal-tar pitch as precursor and KOH as activated agent, the activated carbon electrode material was fabricated for supercapacitor.The surface area and the pore structure of activated carbon were analyzed by Nitro adsorption method. The electrochemical properties of the activated carbons were determined using two-electrode capacitors in 6 mol/L KOH aqueous electrolytes. The influences of activated temperature and mass ratio of KOH to C on the pore structure and electrochemical property of porous activated carbon were investigated in detail. The reasons for the changes of pore structure and electrochemical performance of activated carbon prepared under different conditions were also discussed theoretically. The results indicate that the maximum specific capacitance of 240 F/g can be obtained in alkaline medium, and the surface area, the pore structure and the specific capacitance of activated carbon depend on the treatment methods; the capacitance variation of activated carbon cannot be interpreted only by the change of surface area and pore structure, the lattice order and the electrolyte wetting effect of the activated carbon should also be taken into account.展开更多
A conceptually new approach has been developed for the fabrication of magnetite(Fe3O4)-decorated carbon nanotubes(M-CNTs)for negative electrodes of electrochemical supercapacitors.M-CNTs were prepared by an ultrasonic...A conceptually new approach has been developed for the fabrication of magnetite(Fe3O4)-decorated carbon nanotubes(M-CNTs)for negative electrodes of electrochemical supercapacitors.M-CNTs were prepared by an ultrasonic-assisted chemical synthesis method,which involved dispersion of functionalized CNTs in water,Fe3O4 formation on the CNTs surface,and particle extraction through liquid-liquid interface(PELLI).Palmitic acid was found to be an efficient new extractor for PELLI.The slurries produced after drying and redispersing M-CNTs and slurries obtained using PELLI were used for electrode fabrication.The electrodes prepared using PELLI showed superior performance due to reduced particle agglomeration.Testing results provided an insight into the influence of Fe3O4/CNTs mass ratio on the capacitance and capacitance retention at high charge-discharge rates.A capacitance of 5.82 F cm−2(145.4 F g−1)was achieved in Na2SO4 electrolyte using electrodes with high active mass of 40 mg cm−2 and ratio of active mass to current collector mass of 0.6.Good electrochemical performance was achieved at low impedance.The capacitance of the negative M-CNTs electrodes was comparable with capacitance of advanced positive MnO2-CNTs electrodes,which was beneficial for the fabrication of asymmetric devices.The asymmetric device has been fabricated,which showed promising performance in a voltage window of 1.6 V.展开更多
Electrochemical capacitors, which can store large amount of electrical energy with the capacitance of thousands of Farads, have recently been attracting enormous interest and attention. Carbon nanostructures such as c...Electrochemical capacitors, which can store large amount of electrical energy with the capacitance of thousands of Farads, have recently been attracting enormous interest and attention. Carbon nanostructures such as carbon nanotubes and graphene are considered as the potentially revolutionary energy storage materials due to their excellent properties. This paper is focused on the application of carbon nanostructures in electrochemical capacitors, giving an overview regarding the basic mechanism, design, fabrication and achievement of latest research progresses for electrochemical capacitors based on carbon nanotubes, graphene and their composites. Their current challenges and future prospects are also discussed.展开更多
The influences of molar ratio of KOH to C and activated temperature on the pore structure and electrochemical property of porous activated carbon from mesophase pitch activated by KOH were investigated. The surface ar...The influences of molar ratio of KOH to C and activated temperature on the pore structure and electrochemical property of porous activated carbon from mesophase pitch activated by KOH were investigated. The surface areas and the pore structures of activated carbons were analyzed by nitrogen adsorption, and the electrochemical properties of the activated carbons were studied using two-electrode capacitors in organic electrolyte. The results indicate that the maximum surface area of 3 190 m2/g is obtained at molar ratio of KOH to C of 5:1, the maximum specific capacitance of 122 F/g is attained at molar ratio of KOH to C of 4:1, and 800 ℃ is the proper temperature to obtain the maximum surface area and capacitance.展开更多
Porous active core-shell carbon material with excellent synergistic effect has been regarded as a prospective material for supercapacitors.Herein,we report an integrated method for the facile synthesis of carbide-deri...Porous active core-shell carbon material with excellent synergistic effect has been regarded as a prospective material for supercapacitors.Herein,we report an integrated method for the facile synthesis of carbide-derived carbon(CDC)encapsulated with porous N-doped carbon(CDC@NC)towards highperformance supercapacitors.Polydopamine(PDA)as nitrogen and carbon sources was simply coated on SiC nanospheres to form SiC@PDA,which was then directly transformed into CDC@NC via a onestep molten salt electro-etching/in-situ doping process.The synthesized CDC@NC with hierarchically porous structure has a high specific surface area of 1191 m^(2) g^(-1).The CDC core and NC shell are typical amorphous carbon and more ordered N-doped carbon,respectively.Benefitting from its unique dual porous structures,the CDC@NC demonstrates high specific capacitances of 255 and 193 F g^(-1) at 0.5 and20 A g^(-1),respectively.The reaction mechanism of the electro-etching/in-situ doping process has also been investigated through experimental characterizations and theoretical density functional theory calculations.It is suggested that the molten salt electro-etching/in-situ doping strategy is promising for the synthesis of active core-shell porous carbon materials with synergistic properties for supercapacitors without the need for additional doping/activation processes.展开更多
Compressible supercapacitors play an increasingly significant role in flexible sensors and wearable electronic devices.However,the integration of mechanical compressibility and excellent electrochemical performance in...Compressible supercapacitors play an increasingly significant role in flexible sensors and wearable electronic devices.However,the integration of mechanical compressibility and excellent electrochemical performance into a single device remains a challenge.Herein,we demonstrate a compressible and high-performance supercapacitor based on an N-doped carbon foam elastomer with hierarchical carbon nanotubes.Hierarchically structured Fe3C@N-doped carbon nanotubes/N-doped carbon foam and Ni@N-doped carbon nanotubes/N-doped carbon foam have been synthesized via a simple and universal self-catalytic strategy.The hierarchical structural features of self-catalytic N-doped carbon nanotubes serve as a cushion when the composite is subjected to an external force,exhibiting excellent mechanical properties with a maximum compressive strain of 80%and fatigue resistance of 1000 cycles.Moreover,the different electroactive potentials of the transition-metal species in the composites provide the assembly with a maximum operating voltage of 1.4 V,which shows a maximum energy density of∼10.74 Wh kg^(−1)(0.084 mWh cm^(−3))at the power density of∼179.2 W kg^(−1)(1.4 mWh cm^(−3)),and retains 88.4%of the original capacitance after 20,000 charge–discharge cycles,even at a strain of 80%.This work paves the way for controllable fabrication of compressible electrodes and supercapacitors.展开更多
The growth direction,morphology and microstructure of carbon nano-tubes(CNTs)play key roles for their potential applications in electronic and energy storage devices.However,effective synthesis of CNTs in high crystal...The growth direction,morphology and microstructure of carbon nano-tubes(CNTs)play key roles for their potential applications in electronic and energy storage devices.However,effective synthesis of CNTs in high crystallinity and desired microstructure still remains a tremendous challenge.Here we introduce an electric field for controlling the microstructure formation of CNTs.It reveals that the electric field not only make CNTs aligned parallel but also improve the density of CNTs.Especially,the microstructures of CNTs gradually change under electrical field.That is,graphite sheets are transformed from the"herringbone"structure to a highly crystalline structure,facilitating the transportation of electrons.Due to the improved aligned growth direction,high density and highly crystalline microstructure,the electrochemical performance of CNTs is greatly improved.When the CNTs are applied in supercapacitors,they present a high specific capacitance of 237 F/g,three times higher than that of the CNTs prepared without electrical field.Such microstructure modulation of CNTs by electric field would help to construct high performance electronic and energy storage devices.展开更多
This work presents NiS/graphene/carbon nanotube (NiS/GNS/CNT) composites as electrode material for the supercapacitor application in sea flashing signal systems. NiS nanosheets were closely anchored on the conductiv...This work presents NiS/graphene/carbon nanotube (NiS/GNS/CNT) composites as electrode material for the supercapacitor application in sea flashing signal systems. NiS nanosheets were closely anchored on the conductive GNS-CNT networks. As a result, the NiS/GNS/CNT electrode showed a high specific capacitance of 2 377 F.g^-1 at 2 mV.s^-1 and good cycling stability compared with the pure NiS (1 599F.g^-1). The enhanced electrochemical performances are attributed to the synergetic effect between the conductive carbon and the pseudo-capacitive NiS. The high performance supercapacitor may provide application in the sea flashing signal system.展开更多
Large-scale synthesized single-walled carbon nanotubes (SWNT) prepared by electric arc discharge method and a mixture of NiO and Y2O3 as catalyst have been used as electrode materials for supercapacitors. N2 adsorpt...Large-scale synthesized single-walled carbon nanotubes (SWNT) prepared by electric arc discharge method and a mixture of NiO and Y2O3 as catalyst have been used as electrode materials for supercapacitors. N2 adsorption/desorption measurement shows that the SWNT is a microporous and mesoporous material with specific surface area 435 m^2·g^-1. The specific capacitance of the nitric acid treated SWNT in aqueous electrolyte reaches as high as 105 F/g, which is a combination of electric double layer capacitance and pseudocapacitance. The SWNT-based capacitors also have good charge/discharge reversibility and cycling perdurability.展开更多
We report the first example of a practical and efficient template-free strategy for synthesizing ordered mesoporous NiO/poly(sodium-4-styrene sulfonate)(PSS)functionalized carbon nanotubes(FCNTs)composites by calcinin...We report the first example of a practical and efficient template-free strategy for synthesizing ordered mesoporous NiO/poly(sodium-4-styrene sulfonate)(PSS)functionalized carbon nanotubes(FCNTs)composites by calcining a Ni(OH)_(2)/FCNTs precursor prepared by refl uxing an alkaline solution of Ni(NH_(3))x^(2)+and FCNTs at 97 oC for 1 h.The morphology and structure were characterized by X-ray diffraction,scanning electron microscopy,and transmission electron microscopy.Thermal decomposition of the precursor results in the formation of ordered mesoporous NiO/FCNTs composite(ca.48 wt%NiO)with large specifi c surface area.Due to its enhanced electronic conductivity and hierarchical(meso-and macro-)porosity,composite simultaneously meets the three requirements for energy storage in electrochemical capacitors at high rate,namely,good electron conductivity,highly accessibleelectrochemical surface areas owing to the existence of mesopores,and efficient mass transport from the macropores.Electrochemical data demonstrated that the ordered mesoporous NiO/FCNTs composite is capable of delivering a specifi c capacitance(SC)of 526 F/g at 1 A/g and a SC of 439 F/g even at 6 A/g,and show a degradation of only ca.6%in SC after 2000 continuous charge/discharge cycles.展开更多
Since carbon nanotubes(CNTs) possess unique one dimensional(1D) structure, considerable attention has been paid to constructing CNTs into macroscopic materials with different dimensions, including 1D fibers,2D fil...Since carbon nanotubes(CNTs) possess unique one dimensional(1D) structure, considerable attention has been paid to constructing CNTs into macroscopic materials with different dimensions, including 1D fibers,2D films, and 3D foams. Such macroscopic CNT materials exhibit high conductivity, large surface area, as well as good mechanical properties, and thus can be directly used as the flexible supercapacitor(SC) electrodes or the scaffolds for supporting pseudo-capacitive electrode materials. Based on these macroscopic CNT electrodes, diverse SCs with different structures, including flexible, stretchable and/or compressible fiber and thin film SCs, have been designed. This review provides an overview of recent progress towards the development of flexible SCs based on macroscopic CNTs-based electrodes, with a focus on electrode preparation and configuration design as well as their integration with other multifunctional devices.Future development and prospects in the CNTs-based flexible SCs are also discussed.展开更多
基金This project was financially supported by the National Natural Science Foundation of China under grant No.50307009the Ministry of Science and Technology of South Korea through National Research Lab Program.
文摘A nanocomposite of nickel oxide/carbon nanotubes was prepared through a simple chemical precipitation followed by thermal annealing. The electrochemical capacitance of this electrode material was studied. When the mass fraction of CNTs (carbon nanotubes) in NiO/CNT composites increases, the electrical resistivity of nanocomposites decreases and becomes similar to that of pure CNTs when it reaches 30%. The specific surface area of composites increases with increasing CNT mass fraction and the specific capacitance reaches 160 F/g under 10 mA/g discharge current density at CNT mass fraction of 10%.
基金Project(2005CB623703) supported by the National Basic Research Program of China project(5JJ30103) supported bythe Natural Science Foundation of Hunan Province
文摘Taking the selection of coal-tar pitch as precursor and KOH as activated agent, the activated carbon electrode material was fabricated for supercapacitor.The surface area and the pore structure of activated carbon were analyzed by Nitro adsorption method. The electrochemical properties of the activated carbons were determined using two-electrode capacitors in 6 mol/L KOH aqueous electrolytes. The influences of activated temperature and mass ratio of KOH to C on the pore structure and electrochemical property of porous activated carbon were investigated in detail. The reasons for the changes of pore structure and electrochemical performance of activated carbon prepared under different conditions were also discussed theoretically. The results indicate that the maximum specific capacitance of 240 F/g can be obtained in alkaline medium, and the surface area, the pore structure and the specific capacitance of activated carbon depend on the treatment methods; the capacitance variation of activated carbon cannot be interpreted only by the change of surface area and pore structure, the lattice order and the electrolyte wetting effect of the activated carbon should also be taken into account.
基金The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada for the financial support.
文摘A conceptually new approach has been developed for the fabrication of magnetite(Fe3O4)-decorated carbon nanotubes(M-CNTs)for negative electrodes of electrochemical supercapacitors.M-CNTs were prepared by an ultrasonic-assisted chemical synthesis method,which involved dispersion of functionalized CNTs in water,Fe3O4 formation on the CNTs surface,and particle extraction through liquid-liquid interface(PELLI).Palmitic acid was found to be an efficient new extractor for PELLI.The slurries produced after drying and redispersing M-CNTs and slurries obtained using PELLI were used for electrode fabrication.The electrodes prepared using PELLI showed superior performance due to reduced particle agglomeration.Testing results provided an insight into the influence of Fe3O4/CNTs mass ratio on the capacitance and capacitance retention at high charge-discharge rates.A capacitance of 5.82 F cm−2(145.4 F g−1)was achieved in Na2SO4 electrolyte using electrodes with high active mass of 40 mg cm−2 and ratio of active mass to current collector mass of 0.6.Good electrochemical performance was achieved at low impedance.The capacitance of the negative M-CNTs electrodes was comparable with capacitance of advanced positive MnO2-CNTs electrodes,which was beneficial for the fabrication of asymmetric devices.The asymmetric device has been fabricated,which showed promising performance in a voltage window of 1.6 V.
文摘Electrochemical capacitors, which can store large amount of electrical energy with the capacitance of thousands of Farads, have recently been attracting enormous interest and attention. Carbon nanostructures such as carbon nanotubes and graphene are considered as the potentially revolutionary energy storage materials due to their excellent properties. This paper is focused on the application of carbon nanostructures in electrochemical capacitors, giving an overview regarding the basic mechanism, design, fabrication and achievement of latest research progresses for electrochemical capacitors based on carbon nanotubes, graphene and their composites. Their current challenges and future prospects are also discussed.
基金Project(06FJ4059) supported by Hunan Provincial Academician Foundation
文摘The influences of molar ratio of KOH to C and activated temperature on the pore structure and electrochemical property of porous activated carbon from mesophase pitch activated by KOH were investigated. The surface areas and the pore structures of activated carbons were analyzed by nitrogen adsorption, and the electrochemical properties of the activated carbons were studied using two-electrode capacitors in organic electrolyte. The results indicate that the maximum surface area of 3 190 m2/g is obtained at molar ratio of KOH to C of 5:1, the maximum specific capacitance of 122 F/g is attained at molar ratio of KOH to C of 4:1, and 800 ℃ is the proper temperature to obtain the maximum surface area and capacitance.
基金sponsored by the National Natural Science Foundation of China(5197418151574164)+5 种基金the Iron and Steel Joint Research Found of National Natural Science Foundation and China Baowu Steel Group Corporation Limited(U1860203)the Shanghai Rising-Star Program(19QA1403600)China Postdoctoral Science Foundation(2019M661462)the Shanghai Postdoctoral Excellence Program(2018079)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher learning(TP2019041)the CAS Interdisciplinary Innovation Team and High Performance Computing Center,Shanghai University for financial support。
文摘Porous active core-shell carbon material with excellent synergistic effect has been regarded as a prospective material for supercapacitors.Herein,we report an integrated method for the facile synthesis of carbide-derived carbon(CDC)encapsulated with porous N-doped carbon(CDC@NC)towards highperformance supercapacitors.Polydopamine(PDA)as nitrogen and carbon sources was simply coated on SiC nanospheres to form SiC@PDA,which was then directly transformed into CDC@NC via a onestep molten salt electro-etching/in-situ doping process.The synthesized CDC@NC with hierarchically porous structure has a high specific surface area of 1191 m^(2) g^(-1).The CDC core and NC shell are typical amorphous carbon and more ordered N-doped carbon,respectively.Benefitting from its unique dual porous structures,the CDC@NC demonstrates high specific capacitances of 255 and 193 F g^(-1) at 0.5 and20 A g^(-1),respectively.The reaction mechanism of the electro-etching/in-situ doping process has also been investigated through experimental characterizations and theoretical density functional theory calculations.It is suggested that the molten salt electro-etching/in-situ doping strategy is promising for the synthesis of active core-shell porous carbon materials with synergistic properties for supercapacitors without the need for additional doping/activation processes.
基金National Natural Science Foundation of China(grant nos.21805051 and 21875048)Outstanding Youth Project of Guangdong Natural Science Foundation(grant no.2020B1515020028)+3 种基金University Innovation Team Scientific Research Project of Guangzhou Education Bureau(grant no.202235246)Science and Technology Research Project of Guangzhou(grant nos.202102020376 and 202201020214)Guangdong University Student Science and Technology Innovation Climbing Program(grant no.pdjh2022b0415)2022 Innovation Training Program for College Students(grant no.s202211078133).
文摘Compressible supercapacitors play an increasingly significant role in flexible sensors and wearable electronic devices.However,the integration of mechanical compressibility and excellent electrochemical performance into a single device remains a challenge.Herein,we demonstrate a compressible and high-performance supercapacitor based on an N-doped carbon foam elastomer with hierarchical carbon nanotubes.Hierarchically structured Fe3C@N-doped carbon nanotubes/N-doped carbon foam and Ni@N-doped carbon nanotubes/N-doped carbon foam have been synthesized via a simple and universal self-catalytic strategy.The hierarchical structural features of self-catalytic N-doped carbon nanotubes serve as a cushion when the composite is subjected to an external force,exhibiting excellent mechanical properties with a maximum compressive strain of 80%and fatigue resistance of 1000 cycles.Moreover,the different electroactive potentials of the transition-metal species in the composites provide the assembly with a maximum operating voltage of 1.4 V,which shows a maximum energy density of∼10.74 Wh kg^(−1)(0.084 mWh cm^(−3))at the power density of∼179.2 W kg^(−1)(1.4 mWh cm^(−3)),and retains 88.4%of the original capacitance after 20,000 charge–discharge cycles,even at a strain of 80%.This work paves the way for controllable fabrication of compressible electrodes and supercapacitors.
文摘The growth direction,morphology and microstructure of carbon nano-tubes(CNTs)play key roles for their potential applications in electronic and energy storage devices.However,effective synthesis of CNTs in high crystallinity and desired microstructure still remains a tremendous challenge.Here we introduce an electric field for controlling the microstructure formation of CNTs.It reveals that the electric field not only make CNTs aligned parallel but also improve the density of CNTs.Especially,the microstructures of CNTs gradually change under electrical field.That is,graphite sheets are transformed from the"herringbone"structure to a highly crystalline structure,facilitating the transportation of electrons.Due to the improved aligned growth direction,high density and highly crystalline microstructure,the electrochemical performance of CNTs is greatly improved.When the CNTs are applied in supercapacitors,they present a high specific capacitance of 237 F/g,three times higher than that of the CNTs prepared without electrical field.Such microstructure modulation of CNTs by electric field would help to construct high performance electronic and energy storage devices.
基金Foundation item: Supported by the National Natural Science Foundation of China (Nos. 51077014, 21003028 and 51202043): the Fundamental Research funds for the Central Universities, the Program for New Century Excellent Talents in University (NCET-10-0050), and the Excellent Youth Foundation of Heilongjiang Province of China.
文摘This work presents NiS/graphene/carbon nanotube (NiS/GNS/CNT) composites as electrode material for the supercapacitor application in sea flashing signal systems. NiS nanosheets were closely anchored on the conductive GNS-CNT networks. As a result, the NiS/GNS/CNT electrode showed a high specific capacitance of 2 377 F.g^-1 at 2 mV.s^-1 and good cycling stability compared with the pure NiS (1 599F.g^-1). The enhanced electrochemical performances are attributed to the synergetic effect between the conductive carbon and the pseudo-capacitive NiS. The high performance supercapacitor may provide application in the sea flashing signal system.
文摘Large-scale synthesized single-walled carbon nanotubes (SWNT) prepared by electric arc discharge method and a mixture of NiO and Y2O3 as catalyst have been used as electrode materials for supercapacitors. N2 adsorption/desorption measurement shows that the SWNT is a microporous and mesoporous material with specific surface area 435 m^2·g^-1. The specific capacitance of the nitric acid treated SWNT in aqueous electrolyte reaches as high as 105 F/g, which is a combination of electric double layer capacitance and pseudocapacitance. The SWNT-based capacitors also have good charge/discharge reversibility and cycling perdurability.
基金by National Basic Research Program of China(973 Program)(2007CB209703)National Natural Science Foundation of China(20633040,20873064)the Graduate Innovation Plan of Jiangsu Province(CX07B-089Z).
文摘We report the first example of a practical and efficient template-free strategy for synthesizing ordered mesoporous NiO/poly(sodium-4-styrene sulfonate)(PSS)functionalized carbon nanotubes(FCNTs)composites by calcining a Ni(OH)_(2)/FCNTs precursor prepared by refl uxing an alkaline solution of Ni(NH_(3))x^(2)+and FCNTs at 97 oC for 1 h.The morphology and structure were characterized by X-ray diffraction,scanning electron microscopy,and transmission electron microscopy.Thermal decomposition of the precursor results in the formation of ordered mesoporous NiO/FCNTs composite(ca.48 wt%NiO)with large specifi c surface area.Due to its enhanced electronic conductivity and hierarchical(meso-and macro-)porosity,composite simultaneously meets the three requirements for energy storage in electrochemical capacitors at high rate,namely,good electron conductivity,highly accessibleelectrochemical surface areas owing to the existence of mesopores,and efficient mass transport from the macropores.Electrochemical data demonstrated that the ordered mesoporous NiO/FCNTs composite is capable of delivering a specifi c capacitance(SC)of 526 F/g at 1 A/g and a SC of 439 F/g even at 6 A/g,and show a degradation of only ca.6%in SC after 2000 continuous charge/discharge cycles.
基金supported by the MOST (Ministry of Science and Technology of China) (No. 2017YFA0206701)NSFC (National Natural Science Foundation of China) (Nos. 51602218, 21573116, 11604242)+1 种基金MOE (Ministry of Education of China) (No. B12015)Tianjin Basic and High-Tech Development (No. 15JCYBJC17300)
文摘Since carbon nanotubes(CNTs) possess unique one dimensional(1D) structure, considerable attention has been paid to constructing CNTs into macroscopic materials with different dimensions, including 1D fibers,2D films, and 3D foams. Such macroscopic CNT materials exhibit high conductivity, large surface area, as well as good mechanical properties, and thus can be directly used as the flexible supercapacitor(SC) electrodes or the scaffolds for supporting pseudo-capacitive electrode materials. Based on these macroscopic CNT electrodes, diverse SCs with different structures, including flexible, stretchable and/or compressible fiber and thin film SCs, have been designed. This review provides an overview of recent progress towards the development of flexible SCs based on macroscopic CNTs-based electrodes, with a focus on electrode preparation and configuration design as well as their integration with other multifunctional devices.Future development and prospects in the CNTs-based flexible SCs are also discussed.