This paper aims to explore cavity shape variation regularity in the acceleration phase of supercavitat- ing vehicle. According to the theory of Homogenous Equilibrium Flow,with Mixture Multiphase Model,by setting up t...This paper aims to explore cavity shape variation regularity in the acceleration phase of supercavitat- ing vehicle. According to the theory of Homogenous Equilibrium Flow,with Mixture Multiphase Model,by setting up the flow speed at the inlet boundary as a function of time,this study carried out the experiments for the supercavitation vehicle's numeral model and obtained the variation regularity of cavity shape,the viscous drag coefficient and the cavity hysteresis time when the supercavitating vehicle was in the phase of acceleration. Results show that when the vehicle is in the phase of acceleration,at the same cavitation number,the cavity size decrease with the increase of acceleration. With the decrease of cavity number,the effect of acceleration on cavity shape is smaller,but the viscous drag increases along with the increase of acceleration. On the condition when the velocity reaches equality uniform status,the cavity hysteresis decreases as the acceleration becomes smaller. On the condition of the same acceleration,the cavity hysteresis time decreases as the velocity increases.展开更多
The authors designed three different front profiles for supercavitating vehicles based on cavity theory and the Granville streamlined equation are designed. Experiments were done using these front profiles in the Nort...The authors designed three different front profiles for supercavitating vehicles based on cavity theory and the Granville streamlined equation are designed. Experiments were done using these front profiles in the Northwestern Polytechnical University high-speed water tunnel. The experiments indicated that the critical volume of gas required for supercavitation is affected by the axial distribution of the front-end's slope. The experimental data showed critical gas flow rates required for the three designs were less than rood-l, with the greatest decrease 24%. The experimental results also showed the supercavitation generation speeds of the models were faster than mod-1 by up to 32.4%. This verifies that the front profile of a supercaviting vehicle effects supercavity generation speed and critical gas flow rates. The smaller the changes in axial distribution of pressure, the higher the supercavity generation speed. The smaller the changes in curvature distribution of axial, the smaller the critical gas flow rates.展开更多
A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly wit...A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly with the unknown disturbance.Next, the control scheme is established consisting of a computed torque controller(CTC) for the practical vehicle and an RBF neural network controller to estimate model error between the practical vehicle and the nominal model. The network weights are adapted by employing a Lyapunov-based design. Then it is shown by the Lyapunov theory that the trajectory tracking errors asymptotically converge to a small neighborhood of zero. The control performance of the proposed controller is illustrated by simulation.展开更多
Regarding to the problems that supercavitating vehicles have special characteristics from traditional underwater vehicles,robust control problem was studied in this paper for the supercavitating vehicles with mismatch...Regarding to the problems that supercavitating vehicles have special characteristics from traditional underwater vehicles,robust control problem was studied in this paper for the supercavitating vehicles with mismatched uncertainties.The nonlinear dynamic model was improved.For mismatched uncertainties,the robust sliding mode function was proposed based on guaranteed cost theory,and sufficient condition for the existence was given in terms of linear matrix inequality (LMI).Continuous sliding mode controller was designed,with an adaptive technology which was used to estimate the unknown upper bound of mismatched uncertainties.Meanwhile,upper bound of parameter uncertainties was not required.Simulation results demonstrated that the system responds rapidly and has good robust stability.Due to application of guaranteed cost theory,the controlled plant is not only stable but also guarantees an adequate level of performance.Therefore,it provides theoretical references for further study on control problems of supercavitating vehicles.展开更多
To perform structure buckling and reliability analysis on supercavitating vehicles with high velocity in the submarine,supercavitating vehicles were simplified as variable cross section beam firstly.Then structural bu...To perform structure buckling and reliability analysis on supercavitating vehicles with high velocity in the submarine,supercavitating vehicles were simplified as variable cross section beam firstly.Then structural buckling analysis of supercavitating vehicles with or without engine thrust was conducted,and the structural buckling safety margin equation of supercavitating vehicles was established.The indefinite information was described by interval set and the structure reliability analysis was performed by using non-probabilistic reliability method.Considering interval variables as random variables which satisfy uniform distribution,the Monte-Carlo method was used to calculate the non-probabilistic failure degree.Numerical examples of supercavitating vehicles were presented.Under different ratios of base diameter to cavitator diameter,the change tendency of non-probabilistic failure degree of structural buckling of supercavitating vehicles with or without engine thrust was studied along with the variety of speed.展开更多
A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing...A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing the updated Lagrangian formulation.The numerical results indicate that there exists a critical thickness for the supercavitating plain shell for the considered velocity of the vehicle.The structure fails more easily because of instability with the thickness less than the critical value,while the structure maintains dynamic stability with the thickness greater than the critical value.As the velocity of the vehicle increases,the critical thickness for the plain shell increases accordingly.For the considered structural configuration,the critical thicknesses of plain shells are 5 and 7 mm for the velocities of 300 and 400 m/s,respectively.The structural stability is enhanced by using the stiffened configuration.With the shell configuration of nine ring stiffeners,the maximal displacement and von Mises stress of the supercavitating structure decrease by 25% and 17% for the velocity of 300 m/s,respectively.Compared with ring stiffeners,longitudinal stiffeners are more significant to improve structural dynamic performance and decrease the critical value of thickness of the shell for the supercavitating vehicle.展开更多
This paper focuses on robust control problems for supercavitating vehicles in the vertical plane. Firstly, for the mathematical model with mismatched uncertainties, the robust sliding mode function is designed based o...This paper focuses on robust control problems for supercavitating vehicles in the vertical plane. Firstly, for the mathematical model with mismatched uncertainties, the robust sliding mode function is designed based on the guaranteed cost theory, and a sufficient condition for the existence is given in terms of linear matrix inequality (LMI). Secondly, a continuous sliding mode controller is proposed to handle the nonlinear, time - varying behavior of the vehicles. Simulation results demonstrate that the system responds rapidly and has good robust stability. Therefore, it provides theoretical references for further study on control problems of supercavitating vehicles.展开更多
The most complicated component in cavitating flow and pressure distribution is the flow in the cavity closure line. The cavitating flow and pressure distribution provide critical aspects of flow field details in the r...The most complicated component in cavitating flow and pressure distribution is the flow in the cavity closure line. The cavitating flow and pressure distribution provide critical aspects of flow field details in the region. The integral of pressure results of the hydrodynamic forces, indicate domination in the design of a supercavitating vehicle. An experiment was performed in a water tunnel to investigate the pressure characteristics of the cavity closure region. Ventilation methods were employed to generate artificial cavity, and the ventilation rate was adjusted accordingly to obtain the desired cavity length. An array of pressure transducers was laid down the cavity closure line to capture pressure distribution in this region. The experimental results show that there is a pressure peak in the cavity closure region, and the rise rate of pressure in space tends to be higher in the upwind side when the flow is non-axisymmetric. The transient pressure variations during the cavity formation procedure were also present. The method of measurement in this paper can be referenced by engineers. The result helps to study the flow pattern of cavity closure region, and it can also be used to analyze the formation of supercavitating vehicle hydrodynamics.展开更多
基金Sponsored by the National Natural Science Foundation (Grant No.51149003)
文摘This paper aims to explore cavity shape variation regularity in the acceleration phase of supercavitat- ing vehicle. According to the theory of Homogenous Equilibrium Flow,with Mixture Multiphase Model,by setting up the flow speed at the inlet boundary as a function of time,this study carried out the experiments for the supercavitation vehicle's numeral model and obtained the variation regularity of cavity shape,the viscous drag coefficient and the cavity hysteresis time when the supercavitating vehicle was in the phase of acceleration. Results show that when the vehicle is in the phase of acceleration,at the same cavitation number,the cavity size decrease with the increase of acceleration. With the decrease of cavity number,the effect of acceleration on cavity shape is smaller,but the viscous drag increases along with the increase of acceleration. On the condition when the velocity reaches equality uniform status,the cavity hysteresis decreases as the acceleration becomes smaller. On the condition of the same acceleration,the cavity hysteresis time decreases as the velocity increases.
文摘The authors designed three different front profiles for supercavitating vehicles based on cavity theory and the Granville streamlined equation are designed. Experiments were done using these front profiles in the Northwestern Polytechnical University high-speed water tunnel. The experiments indicated that the critical volume of gas required for supercavitation is affected by the axial distribution of the front-end's slope. The experimental data showed critical gas flow rates required for the three designs were less than rood-l, with the greatest decrease 24%. The experimental results also showed the supercavitation generation speeds of the models were faster than mod-1 by up to 32.4%. This verifies that the front profile of a supercaviting vehicle effects supercavity generation speed and critical gas flow rates. The smaller the changes in axial distribution of pressure, the higher the supercavity generation speed. The smaller the changes in curvature distribution of axial, the smaller the critical gas flow rates.
基金supported by the National Natural Science Foundation of China(5167920161473233)
文摘A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly with the unknown disturbance.Next, the control scheme is established consisting of a computed torque controller(CTC) for the practical vehicle and an RBF neural network controller to estimate model error between the practical vehicle and the nominal model. The network weights are adapted by employing a Lyapunov-based design. Then it is shown by the Lyapunov theory that the trajectory tracking errors asymptotically converge to a small neighborhood of zero. The control performance of the proposed controller is illustrated by simulation.
基金Sponsored by the Research Fund for the Doctoral Program of Higher Education of China(Grant No. 200802130003)the National Natural Science Foundation of China(Grant No. 10802026)
文摘Regarding to the problems that supercavitating vehicles have special characteristics from traditional underwater vehicles,robust control problem was studied in this paper for the supercavitating vehicles with mismatched uncertainties.The nonlinear dynamic model was improved.For mismatched uncertainties,the robust sliding mode function was proposed based on guaranteed cost theory,and sufficient condition for the existence was given in terms of linear matrix inequality (LMI).Continuous sliding mode controller was designed,with an adaptive technology which was used to estimate the unknown upper bound of mismatched uncertainties.Meanwhile,upper bound of parameter uncertainties was not required.Simulation results demonstrated that the system responds rapidly and has good robust stability.Due to application of guaranteed cost theory,the controlled plant is not only stable but also guarantees an adequate level of performance.Therefore,it provides theoretical references for further study on control problems of supercavitating vehicles.
基金Sponsored by the National High-Tech Research and Development Program of China(863 Program)(Grant No. 2006AA04Z410)
文摘To perform structure buckling and reliability analysis on supercavitating vehicles with high velocity in the submarine,supercavitating vehicles were simplified as variable cross section beam firstly.Then structural buckling analysis of supercavitating vehicles with or without engine thrust was conducted,and the structural buckling safety margin equation of supercavitating vehicles was established.The indefinite information was described by interval set and the structure reliability analysis was performed by using non-probabilistic reliability method.Considering interval variables as random variables which satisfy uniform distribution,the Monte-Carlo method was used to calculate the non-probabilistic failure degree.Numerical examples of supercavitating vehicles were presented.Under different ratios of base diameter to cavitator diameter,the change tendency of non-probabilistic failure degree of structural buckling of supercavitating vehicles with or without engine thrust was studied along with the variety of speed.
文摘A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing the updated Lagrangian formulation.The numerical results indicate that there exists a critical thickness for the supercavitating plain shell for the considered velocity of the vehicle.The structure fails more easily because of instability with the thickness less than the critical value,while the structure maintains dynamic stability with the thickness greater than the critical value.As the velocity of the vehicle increases,the critical thickness for the plain shell increases accordingly.For the considered structural configuration,the critical thicknesses of plain shells are 5 and 7 mm for the velocities of 300 and 400 m/s,respectively.The structural stability is enhanced by using the stiffened configuration.With the shell configuration of nine ring stiffeners,the maximal displacement and von Mises stress of the supercavitating structure decrease by 25% and 17% for the velocity of 300 m/s,respectively.Compared with ring stiffeners,longitudinal stiffeners are more significant to improve structural dynamic performance and decrease the critical value of thickness of the shell for the supercavitating vehicle.
基金Supported by the National Natural Science Foundation of China( No. 10802026) and Research Fund for the Doctoral Program of Higher Education of China ( No. 200802130003 ).
文摘This paper focuses on robust control problems for supercavitating vehicles in the vertical plane. Firstly, for the mathematical model with mismatched uncertainties, the robust sliding mode function is designed based on the guaranteed cost theory, and a sufficient condition for the existence is given in terms of linear matrix inequality (LMI). Secondly, a continuous sliding mode controller is proposed to handle the nonlinear, time - varying behavior of the vehicles. Simulation results demonstrate that the system responds rapidly and has good robust stability. Therefore, it provides theoretical references for further study on control problems of supercavitating vehicles.
基金Foundation item: Supported by the National Natural Science Foundation of China (11172241), and Northwestern Polytechnical University Foundation for Fundamental Research. (NPU-FFR- 1015)
文摘The most complicated component in cavitating flow and pressure distribution is the flow in the cavity closure line. The cavitating flow and pressure distribution provide critical aspects of flow field details in the region. The integral of pressure results of the hydrodynamic forces, indicate domination in the design of a supercavitating vehicle. An experiment was performed in a water tunnel to investigate the pressure characteristics of the cavity closure region. Ventilation methods were employed to generate artificial cavity, and the ventilation rate was adjusted accordingly to obtain the desired cavity length. An array of pressure transducers was laid down the cavity closure line to capture pressure distribution in this region. The experimental results show that there is a pressure peak in the cavity closure region, and the rise rate of pressure in space tends to be higher in the upwind side when the flow is non-axisymmetric. The transient pressure variations during the cavity formation procedure were also present. The method of measurement in this paper can be referenced by engineers. The result helps to study the flow pattern of cavity closure region, and it can also be used to analyze the formation of supercavitating vehicle hydrodynamics.