There are more uncertainties with ice hydrometeor representations and related processes than liquid hydrometeors within microphysics parameterization(MP)schemes because of their complicated geometries and physical pro...There are more uncertainties with ice hydrometeor representations and related processes than liquid hydrometeors within microphysics parameterization(MP)schemes because of their complicated geometries and physical properties.Idealized supercell simulations are produced using the WRF model coupled with“full”Hebrew University spectral bin MP(HU-SBM),and NSSL and Thompson bulk MP(BMP)schemes.HU-SBM downdrafts are typically weaker than those of the NSSL and Thompson simulations,accompanied by less rain evaporation.HU-SBM produces more cloud ice(plates),graupel,and hail than the BMPs,yet precipitates less at the surface.The limiting mass bins(and subsequently,particle size)of rimed ice in HU-SBM and slower rimed ice fall speeds lead to smaller melting-level net rimed ice fluxes than those of the BMPs.Aggregation from plates in HU-SBM,together with snow–graupel collisions,leads to a greater snow contribution to rain than those of the BMPs.Replacing HU-SBM’s fall speeds using the formulations of the BMPs after aggregating the discrete bin values to mass mixing ratios and total number concentrations increases net rain and rimed ice fluxes.Still,they are smaller in magnitude than bulk rain,NSSL hail,and Thompson graupel net fluxes near the surface.Conversely,the melting-layer net rimed ice fluxes are reduced when the fall speeds for the NSSL and Thompson simulations are calculated using HU-SBM fall speed formulations after discretizing the bulk particle size distributions(PSDs)into spectral bins.The results highlight precipitation sensitivity to storm dynamics,fall speed,hydrometeor evolution governed by process rates,and MP PSD design.展开更多
Based on basic reflectivity of Doppler radar,radial velocity and wind shear result calculated via radial velocity,a typical supercell hailstorm was analyzed.It was found that strong echo appeared in the middle level o...Based on basic reflectivity of Doppler radar,radial velocity and wind shear result calculated via radial velocity,a typical supercell hailstorm was analyzed.It was found that strong echo appeared in the middle level of volume scan during the beginning of storm and the converging radial wind indicated the increasing echo;with the development of storm,the converging radial wind increased gradually and tended to extend vertically,which reveals that the influx of warm and damp air provides enough vapor and heat.In the fastigium of storm,bounded weak echo region and V-shape gap can be observed;moreover,there was a mesocyclone in the radial velocity field.Vertical shear reflected environment field that wind rotated in clockwise with the increase of height,warm and damp influx at low altitude,the dry and cold air diverging at high altitude and the spatial distribution of ascending air flow at the middle level;during the dispersing of storm,the divergence of radial wind transformed to lower level gradually and its convergence reduced with strong echo disappeared.展开更多
By using the high spatial and temporal resolution Jinan Doppler Weather Radar data and Jinan,Xingtai sounding data,the radar signature and mesocyclone parameters of 54 supercells during 2003-2008 were analyzed.The res...By using the high spatial and temporal resolution Jinan Doppler Weather Radar data and Jinan,Xingtai sounding data,the radar signature and mesocyclone parameters of 54 supercells during 2003-2008 were analyzed.The results showed that the probability of a supercell forming would be higher when SI (showalter index) ≤ -2℃,K (K index) ≥ 30℃ and 0-6 km wind shear>15 m/s.The supercell storms can generally be divided into two categories,namely,type of isolation and mosaic type.To the type of isolation,the max reflectivity,cell-based VIL,max reflectivity height,cell top,mesocyclone base and top were significantly higher than the mosaic type.Isolation-type supercells had significantly higher probability of hail,lower probability of gale than the mosaic category.The mesocyclone attribute differences between isolation-type and mosaic type supercells determined the differences of storm structures and severe weather phenomenon.展开更多
Electrical characteristics of an isolated supercell storm observed on 13 June 2014 over Beijing were investigated using lightning data obtained from the Beijing Lightning Network,radar reflectivity,and hydrometeor ret...Electrical characteristics of an isolated supercell storm observed on 13 June 2014 over Beijing were investigated using lightning data obtained from the Beijing Lightning Network,radar reflectivity,and hydrometeor retrievals during the 6-h lifetime.Positive cloud-to-ground(+CG)lightning took a high percentage of CG lightning.Before and during a hail event,+CG lightning was more frequent than negative cloud-to-ground(-CG)lightning,except that+CG lightning took a high percentage at the beginning and in the dissipating stage.After the hail event ended,-CG lightning dominated and reached its maximum value.An analysis of hydrometeors retrieved by X-band polarimetric radar revealed that the discharge concentrated in the convective region with graupel particles and hailstones,whereas graupel,snow and ice crystals in the stratiform region.Lightning radiation sources were located mainly in the convective region,some of which were distributed along a gradient of radar reflectivity from the convective region to the stratiform region.The indication is that the supercell demonstrated an inverted tripole charge structure before the hail event,which converted to a normal tripole structure after the hail event.展开更多
ABSTRACT Numerical simulations with the Advanced Regional Prediction System (ARPS) model were performed to investigate the impact of microphysical drop size distribution (DSD) on tornadogenesis in a subtropical s...ABSTRACT Numerical simulations with the Advanced Regional Prediction System (ARPS) model were performed to investigate the impact of microphysical drop size distribution (DSD) on tornadogenesis in a subtropical supercell thunderstorm over Anhui Province, eastern China. Sensitivity experiments with different intercept parameters of rain, hail and snow DSDs in a Lin-type microphysics scheme were conducted. Results showed that rain and hail DSDs have a significant impact on the simulated storm both microphysically and dynamically. DSDs characterized by larger (smaller) intercepts have a smaller (larger) particle size and a lower (higher) mass-weighted mean fall velocity, and produce relatively stronger (weaker) and wider (narrower) cold pools through enhanced (reduced) rain evaporation and hail melting processes, which are then less favorable (favorable) for tornadogenesis. However, tornadogenesis will also be suppressed by the weakened mid-level mesocyclone when the cold pool is too weak. When compared to a U.S. Great Plain case, the two microphysical processes are more sensitive to DSD variations in the present case with a higher melting level and deeper warm layer. This suggests that DSD-related cloud microphysics has a stronger influence on tornadogenesis in supercells over the subtropics than the U.S. Great Plains.展开更多
This study presents the radar-based characteristics and formation environment of supercells spawned by the tornadic landfalling Typhoon Mujigae(2015)in October 2015.More than 100 supercells were identified within a 24...This study presents the radar-based characteristics and formation environment of supercells spawned by the tornadic landfalling Typhoon Mujigae(2015)in October 2015.More than 100 supercells were identified within a 24-hour period around the time of the typhoon’s landfall,of which three were tornadic with a rotational intensity clearly stronger than those of non-tornadic supercells.The identified supercells were concentrated within a relatively small area in the northeast quadrant beyond 140 km from the typhoon center.These supercells were found more likely to form over flat topography and were difficult to maintain in mountainous regions.During the study period,more supercells formed offshore than onshore.The mesocyclones of the identified supercells were characterized by a small diameter generally less than 5 km and a shallow depth generally less than 4 km above ground level.An environmental analysis revealed that the northeast quadrant had the most favorable conditions for the genesis of supercell in this typhoon case.The nondimensional supercell composite parameter(SCP)and entraining-SCP(E-SCP)were effective in separating supercell from non-supercell environment.Even though the atmosphere in the typhoon’s northeast quadrant was characterized by an E-SCP/SCP value supportive of supercell organization,orography was an impeditive factor for the supercell development.These findings support the use of traditional parameters obtained from midlatitude supercells to assess the supercell potential in a tropical cyclone envelope.展开更多
By using the conventional observations, radar data, NCEP/NCAR FNL 1°×1° reanalysis data and numerical simulation data and with the construction and calculation of radar echo parameters, this paper prese...By using the conventional observations, radar data, NCEP/NCAR FNL 1°×1° reanalysis data and numerical simulation data and with the construction and calculation of radar echo parameters, this paper presents the structural characteristics and physical processes of a short-time heavy precipitation supercell that occurred in the squall line process in Shanxi Province on 24 June 2020. The results show that this squall line event occurred in front of a surface cold front,combined with infiltration of low-level cold air and continuous increase of near-surface humidity in the afternoon. The surface mesoscale convergence line and mesoscale dew point front contributed to the development and systemization of the squall line by a large degree. The short-time extremely heavy precipitation in Pingshun County was caused by the development of a supercell from thunderstorm cells on the front side of the squall line. The characteristics of sharp increase in vertical integral liquid water content, persistent increase in reflectivity factor and continuous rise in the echo top height appeared about 23 min earlier than the severe precipitation, which has qualitative indicating significance for the nowcasting of short-time heavy precipitation. A quantitative analysis of the radar echo parameters suggests that the“sudden drop”of FV40was a precursor signal of cells’ coalescence and rapid development to the mature stage. The areal change of the echo core at the 6 km height was highly subject to the merging and developing of cells, the rapid change of hydrometeor particles in clouds and the precipitation intensity. Changes in the cross-sectional area of convective cells at different heights can indirectly reflect the changes of liquid particles and ice particles in clouds, which is indicatively meaningful for predicting the coalescing and developing-to-maturing of cells and heavy precipitation 30-45 min earlier.A comprehensive echo parameter prediction model constructed by the random forest principle can predict the magnitude of short-time heavy precipitation 40-50 min in advance. Numerical simulation reveals that large amounts of water vapor existed in the near-surface atmosphere, and that the cells rapidly obtained moisture from the ambient atmosphere and developed rapidly through maternal feeding. The cold cloud zone was narrow, upright and had a high stretch height. The upward motion in clouds was strong and deep, and very rich in liquid water content. The graupel particles had a large vertical distribution range, the coexistence area of graupel and snow was large, the height of raindrops was close to the surface with a wide horizontal scale, and the precipitation efficiency was high. These may be the important elements responsible for the occurrence of the short-time heavy precipitation that exceeded historical extreme values. On the basis of the above analyses, a comprehensive parameter(CP) prediction model is worked out, which can estimate the developing trend of supercells and the intensity of short-time heavy precipitation about 1 h in advance.展开更多
The formation of a supercell and its impact on lithium-ion conductivity have been studied through synthesis of three layered oxides,Li_(2)Ca_(1.5)Nb_(3)O_(10),Li_(2)Ca_(1.5)TaNb_(2)O_(10)and Li_(2)Ca_(1.5)Ta_(2)NbO_(1...The formation of a supercell and its impact on lithium-ion conductivity have been studied through synthesis of three layered oxides,Li_(2)Ca_(1.5)Nb_(3)O_(10),Li_(2)Ca_(1.5)TaNb_(2)O_(10)and Li_(2)Ca_(1.5)Ta_(2)NbO_(10),related to Ruddlesden-Popper structure-type.Neutron diffraction experiments show that these materials feature a supercell,which is significantly larger(√2a×√2b×1c)than that of a typical RuddlesdenPopper oxide.Electrochemical impedance spectroscopy shows that the formation of the new supercell is associated with enhanced lithium-ion conductivity of these materials as compared with the Sranalogue,Li_(2)Sr_(1.5)Nb_(3)O_(10),which lacks the supercell.In addition,a systematic trend is observed in the ionic conductivity:Li_(2)Ca_1.5Ta_(2)NbO10<Li_(2)Ca_(1.5)TaNb_(2)O_(10)<Li_(2)Ca_(1.5)Nb_(3)O_(10).The Arrhenius analysis in the temperature range 25–400°C shows that activation energy for the temperature-dependent rise in conductivity follows a similar trend.Detailed analyses of real and imaginary components of impedance,dielectric properties,tangent loss,and complex modulus show the systematic increase in lithium-ion mobility.The dielectric values mirror the same trend as ionic conductivity,where the most conductive material shows the highest dielectric properties.In addition,the same trend is observed in the peak and dispersion of dielectric loss and complex modulus as a function of angular frequency,indicating a systematic rise in lithium-ion mobility.This fundamental study is aimed at exploring the impact of structural modifications on ionic conductivity in solids.展开更多
Idealized supercell storms are simulated with two aerosol-aware bulk microphysics schemes(BMSs),the Thompson and the Chen-Liu-Reisner(CLR),using the Weather Research and Forecast(WRF)model.The objective of this study ...Idealized supercell storms are simulated with two aerosol-aware bulk microphysics schemes(BMSs),the Thompson and the Chen-Liu-Reisner(CLR),using the Weather Research and Forecast(WRF)model.The objective of this study is to investigate the parameterizations of aerosol effects on cloud and precipitation characteristics and assess the necessity of introducing aerosols into a weather prediction model at fine grid resolution.The results show that aerosols play a decisive role in the composition of clouds in terms of the mixing ratios and number concentrations of liquid and ice hydrometeors in an intense supercell storm.The storm consists of a large amount of cloud water and snow in the polluted environment,but a large amount of rainwater and graupel instead in the clean environment.The total precipitation and rain intensity are suppressed in the CLR scheme more than in the Thompson scheme in the first three hours of storm simulations.The critical processes explaining the differences are the auto-conversion rate in the warm-rain process at the beginning of storm intensification and the low-level cooling induced by large ice hydrometeors.The cloud condensation nuclei(CCN)activation and auto-conversion processes of the two schemes exhibit considerable differences,indicating the inherent uncertainty of the parameterized aerosol effects among different BMSs.Beyond the aerosol effects,the fall speed characteristics of graupel in the two schemes play an important role in the storm dynamics and precipitation via low-level cooling.The rapid intensification of storms simulated with the Thompson scheme is attributed to the production of hail-like graupel.展开更多
Firstly, typical features of a supercell, which occurred in Guangzhou on August 11, 2004, are discussed by using the new generation weather radar data. V-notch, finger-echo, weak echo region, overfiang and echo-wall a...Firstly, typical features of a supercell, which occurred in Guangzhou on August 11, 2004, are discussed by using the new generation weather radar data. V-notch, finger-echo, weak echo region, overfiang and echo-wall are observed from reflectivity products. A vertical cross section of the radial velocity is made along the direction of the low-level inflow and across the maximum reflectivity core, which displays a part of strong updraft and downdraft. Secondly, a 3-D convective storm model is used to simulate the supercell. The maximum reflectivity and the core thickness of the simulated radar echo are 75 dBz and 14km, respectively. These values are more than the counterparts that are detected by radar. The reason is that attenuation is not calculated in the model. The wind field structure is also given when the storm is the strongest. Divergence, caused by thunderstorm outflow, is in the low level. In the middle and high level, convergence is dominant, but the plume is not simulated at the top. Finally, the evolution of the simulated vertical motion is documented. The interaction between the environmental wind and the updraft, which is formed by the convergence on the ground at the beginning, makes the storm stronger. Then, downdraft occurs and grows. When it becomes dominant, the supercell collapses.展开更多
[Objective] The research aimed to study three-dimensional structure and echo characteristic quantity of a supercell storm in central Gansu on May 30,2005.[Method] By monitoring data of Lanzhou CINRAD/CC Doppler radar,...[Objective] The research aimed to study three-dimensional structure and echo characteristic quantity of a supercell storm in central Gansu on May 30,2005.[Method] By monitoring data of Lanzhou CINRAD/CC Doppler radar,the three-dimensional structure characteristics of a rare supercell storm which happened in central Gansu on May 30,2005 were analyzed.We tried to reveal three-dimensional structure and echo characteristic index of supercell storm in the northeast of Qinghai-Tibet Plateau,and find reason of rare heavy hail appearance.[Result] The large-scale strong storm was formed by the common effect of Mongolia cold vortex,low-level jet and ground cold front.When the development of main echo was mature,on reflectivity factor map,it presented obvious inverted 'V' shaped structure in left front of low-level storm,typical hooked and 'person'-type echo characteristics in the right rear.The bounded weak echo zone(vault) in low level corresponded with strong echo overhanging body in high level.It surpassed 60 dBz in the strong reflectivity factor zone.It presented one weak meso-cyclone on corresponding radial velocity map.The jumped increase characteristic of VIL could be as one of indices for judging that hail started to grow.Almost all storms(VILD ≥4.0 g/m3) had more obvious indication significance than VIL for judging heavy hail(diameter ≥20 mm).[Conclusion] The research provided reference for nowcasting of strong convection weather and artificial hail suppression.展开更多
As part of NOAA's "Warn-On-Forecast" initiative, a convective-scale data assimilation and prediction system was developed using the WRF-ARW model and ARPS 3DVAR data assimilation technique. The system was then eval...As part of NOAA's "Warn-On-Forecast" initiative, a convective-scale data assimilation and prediction system was developed using the WRF-ARW model and ARPS 3DVAR data assimilation technique. The system was then evaluated using retrospective short-range ensemble analyses and probabilistic forecasts of the tornadic supercell outbreak event that occurred on 24 May 2011 in Oklahoma, USA. A 36-member multi-physics ensemble system provided the initial and boundary conditions for a 3-km convective-scale ensemble system. Radial velocity and reflectivity observations from four WSR-88 Ds were assimilated into the ensemble using the ARPS 3DVAR technique. Five data assimilation and forecast experiments were conducted to evaluate the sensitivity of the system to data assimilation frequencies, in-cloud temperature adjustment schemes, and fixed- and mixed-microphysics ensembles. The results indicated that the experiment with 5-min assimilation frequency quickly built up the storm and produced a more accurate analysis compared with the 10-min assimilation frequency experiment. The predicted vertical vorticity from the moist-adiabatic in-cloud temperature adjustment scheme was larger in magnitude than that from the latent heat scheme. Cycled data assimilation yielded good forecasts, where the ensemble probability of high vertical vorticity matched reasonably well with the observed tornado damage path. Overall, the results of the study suggest that the 3DVAR analysis and forecast system can provide reasonable forecasts of tornadic supercell storms.展开更多
A total of 61 supercells with mesocyclones lasting for at least 6 volume scans were investigated. These storm parameters and mesocyclone parameters were counted and compared to determine the salient differences betwee...A total of 61 supercells with mesocyclones lasting for at least 6 volume scans were investigated. These storm parameters and mesocyclone parameters were counted and compared to determine the salient differences between isolated supercells and embedded supercells in different regions. The results showed that the mesocyclone parameters had different evolution characteristics in three stages of mesocyclone. The storm parameters, mesocyclone parameters and severe weather phenomenon had significantly differences between isolated supercells and embedded supercells. The mesocyclone parameter differences determined the differences in the reflectivity structure and weather phenomenon. The higher base and top of mesocyclone for isolated supercells indicated that the isolated supercells had higher maximum reflectivity, maximum reflectivity height, cell-based vertically integrated liquid and top of storm cell, and significantly higher probability of hail or large hail than the embedded supercells. The descending lower base of mesocyclone at its mature stage in the region of Jianghuai Plain indicated that the supercells in this region had a higher probability of mesocyclone-induced tornado.展开更多
Supercell,known as video game company,that is the best at making money,had developed a value of over 10 billion dollars by running only 5 games.All of their games earned more than a billion dollars with over one billi...Supercell,known as video game company,that is the best at making money,had developed a value of over 10 billion dollars by running only 5 games.All of their games earned more than a billion dollars with over one billion downloads in total.There must be a lot worth studying their strategies.This paper is divided into three parts:analyzing the marketing strategies in their games and advertising,their special way of management,and how they have contributed to the company's huge success.展开更多
Tornadoes are incredibly powerful and destructive natural events,yet the microphysical characteristics of the parent storm and its effects on tornadogenesis remain unclear.This study analyzed polarization radar data o...Tornadoes are incredibly powerful and destructive natural events,yet the microphysical characteristics of the parent storm and its effects on tornadogenesis remain unclear.This study analyzed polarization radar data of a tornadic supercell that occurred in Jiangsu Province of China on 14 May 2021,in comparison with another tornadic supercell and two non-tornadic supercells that occurred in the same region in 2023.The two tornadic supercells exhibited lower differential reflectivity(ZDR)in the hook echo region compared with the non-tornadic supercells,indicating smaller median drop sizes.A distinct increase in ZDR from the melting of frozen hydrometeors,observed between2.5-and 4.0-km altitude in the non-tornadic storms,was absent in the tornadic cases.The non-tornadic supercells also displayed substantially higher specific differential phase(KDP)below the melting level,likely aroused from enhanced melting and cooling.These findings suggest fundamental microphysical contrasts between tornadic and nontornadic supercells.Specifically,tornadic supercells have smaller droplets and may reduce melting in hook echoes.Moreover,greater separation between the ZDR arc and the KDP foot was observed during tornadogenesis.The vertical gradient of KDP related to the cooling pool strength of the hook echo,regulating rear-flank downdraft thermodynamics.Despite the limited number of cases investigated,the findings of this study indicate that monitoring ZDR,KDP,and drop size distribution trends could assist with tornado prediction and warnings.展开更多
Based on the Weather Research Forecasting(WRF) model that features charging and discharging parameterization,relationships between tornado, hail and lightning were investigated for a tornado-producing(EF4 intensity) s...Based on the Weather Research Forecasting(WRF) model that features charging and discharging parameterization,relationships between tornado, hail and lightning were investigated for a tornado-producing(EF4 intensity) supercell thunderstorm over Yancheng City in Jiangsu Province, China, on 23 June 2016. Based on a sounding at 0800, there was a low lifting condensation level, substantial convective available potential energy(CAPE), and strong vertical wind shear near Yancheng City, which promote supercell development. At 1400, observations revealed that hail production and a dramatic increase of positive cloud-to-ground flash rates occurred simultaneously, maximizing five minutes later. The tornado occurred 30 min after the hail production. The time of minimum positive cloud-to-ground flash rates was 15 min later. The simulation indicated that the tornadic supercell moved eastward and that positive cloud-to-ground flash rates increased dramatically at 1400, the same as observed, but their maximum was 5 min later than observed. The simulated updraft volume peaked at 1425 and the simulated downdraft volume maximized5 min later, when the mesocyclone formed. Simulated reflectivities showed no hook echo and horizontal winds for different height at mid-low levels had a different cyclonic shear at 1430, favorable to mesocyclone formation. Based on the simulated results,the region of positively charged graupel ascended resulting from the region of high liquid water content was lifted by the strong updraft, forming a mid-level strong positive charge region. A lower negative charge region formed by the inductive charging mechanism of collisions between graupel and droplets at the bottom of the cloud, conducive to positive cloud-to-ground flashes.展开更多
In this study,single Doppler radar data were used to examine the structure and evolution of a high precipitation(HP) supercell embedded in a cold front near Jianyang,Fujian Province on 12 April 2003.The synoptic env...In this study,single Doppler radar data were used to examine the structure and evolution of a high precipitation(HP) supercell embedded in a cold front near Jianyang,Fujian Province on 12 April 2003.The synoptic environment was characterized by high humidity at low levels,moderate CAPE(convective available potential energy;1601 J kg^(-1)),moderate wind shear(22 m s^(-1) in 0-5 km),and veering of the horizontal winds with height,similar to those HP supercells previously observed in midlatitudes.In addition,the calculated bulk Richardson number was only 16,suggesting favorable environmental conditions for supercell development. The documented storm was located at the leading edge of a squall line.It was initiated from a single cell at 0732 UTC.It evolved into a bow shape gradually,and then split into two separate storms along the storm motion direction through the apex of the bow echo.The left-moving storm dissipated rapidly, but the right-moving storm strengthened and evolved into an HP supercell,lasting for more than 1 h.The radar reflectivity of the HP supercell during its mature stage showed a typical low-level hook echo at the front flank of the storm with its maximum reflectivity beyond 70 dBZ.Above the hook echo,an elevated maximum reflectivity core accompanied by a bounded weak-echo region(BWER) and a down-shear echo overhanging aloft were clearly identified.The elevated BWER,marked by 40-50-dBZ reflectivity values,was surrounded by values of 60-70 dBZ.A well-defined mesocyclone lasted about 1 h and was collocated with the low-level WER and middle-level BWER.The radar-estimated time-height profiles of mesocyclone rotational velocity and diameter indicated that this mesocyclone formed initially at middle level,then deepened and strengthened rapidly with the vertical depth deeper than 8 km and rotational velocity stronger than 24 m s^(-1) at the mature stage,and later decayed rapidly.The GBVTD(ground-based velocity track display)-derived primary circulation showed that the maximum tangential wind of the mesocyclone appeared at middle level (3-5 km) with a value of about 20 m s^(-1).The mean radial wind field was characterized with a low-level inflow below 4 km,and accompanied by stronger updraft near the mesocyclone center.Between 4 and 7 km.the tangential wind profile resembled a Rankine combined vortex with the radius of maximum wind (RMW) at 3 km.and there was outflow/inflow inside/outside of the RMW.Correspondingly,the vertical velocity indicated a stronger updraft at the RMW and a weak downdraft inside the RMW.Above 7 km,the outflow strengthened and extended outside the RMW. In summary,the reflectivity structures of the storm and the accompanying mesocyclone were similar to those midlatitude HP supercells proposed in Miller's paper in 1994.However,the evolution of the HP supercell,including its three stages:ordinary storm,bow echo,and storm splitting,was quite different from those documented before.展开更多
Three supercell storms on 24 June 2004(0624),28 June 2003(0628),and 27 September 2002(0927) induced different damages in Shandong Province.Storm 0927 was inferior in size and intensity to storms 0628 and 0624.Th...Three supercell storms on 24 June 2004(0624),28 June 2003(0628),and 27 September 2002(0927) induced different damages in Shandong Province.Storm 0927 was inferior in size and intensity to storms 0628 and 0624.The structure and evolvement of the three storms were analyzed in detail based on the WSR98D radar data in combination with weather charts.The results show that mesoscale surface convergence triggered release of instable energy,which resulted in severe convection.During the development stage,storms 0927,0628,and 0624 displayed multi-cell propagation,single-cell evolution,and multi-cell mergence,respectively.The storm tracks were similar:they were all right-moving supercell storms,i.e.,moving at an angle of 30°-70° to the right of the mean wind and at a speed of about 45%-70% of the mean wind speed.In the mature stage,the maximum reflectivity appeared at the low level in storm 0927,mid level in storm 0628,and mid-upper level in storm 0624.These storms possessed almost all typical features of supercell storms:weak echo region(WER),bounded weak echo region(BWER),and mesocyclone.An organized mesocyclone formed at the middle height of an updraft,deepened gradually downward and upward,and became a typical mid-level mesocyclone with strong updrafts.The vertical structures of airflows in the three storms were similar,i.e.,significant convergence at low level,nearly pure rotation at mid level,and divergent rotation at upper level.However,signatures of mid-level horizontal airflows in the three storms were different:at mid level,there was a single vortex in storm 0628,but a double-vortex flow pattern was seen in storms 0927 and 0624.The horizontal structure of the double-vortex flow was hard to be blown away by the environmental airflow,and thus the storms could persist for a longer period of time than the single vortex storm.展开更多
The structure stability, elastic property and electronic structure of a-Fe supercell with La atom were inves- tigated by first-principles, in which, generalized gradient approximation (GGA) with the Perdew Burke Ern...The structure stability, elastic property and electronic structure of a-Fe supercell with La atom were inves- tigated by first-principles, in which, generalized gradient approximation (GGA) with the Perdew Burke Ernzerhof (PBE) was used as exchange-correlation functional, a-Fe supercells with La atom include a-Fe supercell with La atom in octahedral interstitial solid solute (La-OISS), that with La atom in tetrahedral interstitial solid solute (La-TISS) and that with La atom in substitutional solid solute (La-SSS). The results show that the La-SSS a-Fe supercell is more stable than La-OISS one. The resistance to volume change, reversible deformation and stiffness of La-OISS a-Fe supercell are stronger than those of La-SSS one. Moreover, the degrees of anisotropy and ionization in La-SSS a-Fe supercell are both stronger than those in La-OISS one. The bonding strength between La atom and Fe atom in La-SSS a-Fe supercell is larger than that in La-OISS one.展开更多
基金This research was primarily supported by a NOAA Warn-on-Forecast(WoF)grant(Grant No.NA16OAR4320115).
文摘There are more uncertainties with ice hydrometeor representations and related processes than liquid hydrometeors within microphysics parameterization(MP)schemes because of their complicated geometries and physical properties.Idealized supercell simulations are produced using the WRF model coupled with“full”Hebrew University spectral bin MP(HU-SBM),and NSSL and Thompson bulk MP(BMP)schemes.HU-SBM downdrafts are typically weaker than those of the NSSL and Thompson simulations,accompanied by less rain evaporation.HU-SBM produces more cloud ice(plates),graupel,and hail than the BMPs,yet precipitates less at the surface.The limiting mass bins(and subsequently,particle size)of rimed ice in HU-SBM and slower rimed ice fall speeds lead to smaller melting-level net rimed ice fluxes than those of the BMPs.Aggregation from plates in HU-SBM,together with snow–graupel collisions,leads to a greater snow contribution to rain than those of the BMPs.Replacing HU-SBM’s fall speeds using the formulations of the BMPs after aggregating the discrete bin values to mass mixing ratios and total number concentrations increases net rain and rimed ice fluxes.Still,they are smaller in magnitude than bulk rain,NSSL hail,and Thompson graupel net fluxes near the surface.Conversely,the melting-layer net rimed ice fluxes are reduced when the fall speeds for the NSSL and Thompson simulations are calculated using HU-SBM fall speed formulations after discretizing the bulk particle size distributions(PSDs)into spectral bins.The results highlight precipitation sensitivity to storm dynamics,fall speed,hydrometeor evolution governed by process rates,and MP PSD design.
文摘Based on basic reflectivity of Doppler radar,radial velocity and wind shear result calculated via radial velocity,a typical supercell hailstorm was analyzed.It was found that strong echo appeared in the middle level of volume scan during the beginning of storm and the converging radial wind indicated the increasing echo;with the development of storm,the converging radial wind increased gradually and tended to extend vertically,which reveals that the influx of warm and damp air provides enough vapor and heat.In the fastigium of storm,bounded weak echo region and V-shape gap can be observed;moreover,there was a mesocyclone in the radial velocity field.Vertical shear reflected environment field that wind rotated in clockwise with the increase of height,warm and damp influx at low altitude,the dry and cold air diverging at high altitude and the spatial distribution of ascending air flow at the middle level;during the dispersing of storm,the divergence of radial wind transformed to lower level gradually and its convergence reduced with strong echo disappeared.
基金Supported by The Project from Department of Science and Technology of Shandong Province Under Grant No. 2007GG20008001 and 2010GSF10805
文摘By using the high spatial and temporal resolution Jinan Doppler Weather Radar data and Jinan,Xingtai sounding data,the radar signature and mesocyclone parameters of 54 supercells during 2003-2008 were analyzed.The results showed that the probability of a supercell forming would be higher when SI (showalter index) ≤ -2℃,K (K index) ≥ 30℃ and 0-6 km wind shear>15 m/s.The supercell storms can generally be divided into two categories,namely,type of isolation and mosaic type.To the type of isolation,the max reflectivity,cell-based VIL,max reflectivity height,cell top,mesocyclone base and top were significantly higher than the mosaic type.Isolation-type supercells had significantly higher probability of hail,lower probability of gale than the mosaic category.The mesocyclone attribute differences between isolation-type and mosaic type supercells determined the differences of storm structures and severe weather phenomenon.
基金supported by the National Natural Science Foundation of China(Grant Nos.41875007 and 41630425)the Special Fund for Meteorology-Scientific Research in the Public Interest(Grant No.GYHY201506004)the 2018 Open Research Program of the State Key Laboratory of Severe Weather(Grant No.2018LASWB06)。
文摘Electrical characteristics of an isolated supercell storm observed on 13 June 2014 over Beijing were investigated using lightning data obtained from the Beijing Lightning Network,radar reflectivity,and hydrometeor retrievals during the 6-h lifetime.Positive cloud-to-ground(+CG)lightning took a high percentage of CG lightning.Before and during a hail event,+CG lightning was more frequent than negative cloud-to-ground(-CG)lightning,except that+CG lightning took a high percentage at the beginning and in the dissipating stage.After the hail event ended,-CG lightning dominated and reached its maximum value.An analysis of hydrometeors retrieved by X-band polarimetric radar revealed that the discharge concentrated in the convective region with graupel particles and hailstones,whereas graupel,snow and ice crystals in the stratiform region.Lightning radiation sources were located mainly in the convective region,some of which were distributed along a gradient of radar reflectivity from the convective region to the stratiform region.The indication is that the supercell demonstrated an inverted tripole charge structure before the hail event,which converted to a normal tripole structure after the hail event.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos.41175118, 40775005 and 41175043)the National Basic Research Program of China (Grant No.2013CB430105)partially supported by the China Special Fund for Meteorological Research in the Public Interest (Grant Nos.GYHY200906003 and GYHY201306040)
文摘ABSTRACT Numerical simulations with the Advanced Regional Prediction System (ARPS) model were performed to investigate the impact of microphysical drop size distribution (DSD) on tornadogenesis in a subtropical supercell thunderstorm over Anhui Province, eastern China. Sensitivity experiments with different intercept parameters of rain, hail and snow DSDs in a Lin-type microphysics scheme were conducted. Results showed that rain and hail DSDs have a significant impact on the simulated storm both microphysically and dynamically. DSDs characterized by larger (smaller) intercepts have a smaller (larger) particle size and a lower (higher) mass-weighted mean fall velocity, and produce relatively stronger (weaker) and wider (narrower) cold pools through enhanced (reduced) rain evaporation and hail melting processes, which are then less favorable (favorable) for tornadogenesis. However, tornadogenesis will also be suppressed by the weakened mid-level mesocyclone when the cold pool is too weak. When compared to a U.S. Great Plain case, the two microphysical processes are more sensitive to DSD variations in the present case with a higher melting level and deeper warm layer. This suggests that DSD-related cloud microphysics has a stronger influence on tornadogenesis in supercells over the subtropics than the U.S. Great Plains.
基金funded fun-ded by the National Natural Science Foundation of China(Grant Nos.41875051 and 41905043)the China Postdoctoral Sci-ence Foundation(Grant No.2019M653146)。
文摘This study presents the radar-based characteristics and formation environment of supercells spawned by the tornadic landfalling Typhoon Mujigae(2015)in October 2015.More than 100 supercells were identified within a 24-hour period around the time of the typhoon’s landfall,of which three were tornadic with a rotational intensity clearly stronger than those of non-tornadic supercells.The identified supercells were concentrated within a relatively small area in the northeast quadrant beyond 140 km from the typhoon center.These supercells were found more likely to form over flat topography and were difficult to maintain in mountainous regions.During the study period,more supercells formed offshore than onshore.The mesocyclones of the identified supercells were characterized by a small diameter generally less than 5 km and a shallow depth generally less than 4 km above ground level.An environmental analysis revealed that the northeast quadrant had the most favorable conditions for the genesis of supercell in this typhoon case.The nondimensional supercell composite parameter(SCP)and entraining-SCP(E-SCP)were effective in separating supercell from non-supercell environment.Even though the atmosphere in the typhoon’s northeast quadrant was characterized by an E-SCP/SCP value supportive of supercell organization,orography was an impeditive factor for the supercell development.These findings support the use of traditional parameters obtained from midlatitude supercells to assess the supercell potential in a tropical cyclone envelope.
基金National Natural Science Foundation of China(41475050)。
文摘By using the conventional observations, radar data, NCEP/NCAR FNL 1°×1° reanalysis data and numerical simulation data and with the construction and calculation of radar echo parameters, this paper presents the structural characteristics and physical processes of a short-time heavy precipitation supercell that occurred in the squall line process in Shanxi Province on 24 June 2020. The results show that this squall line event occurred in front of a surface cold front,combined with infiltration of low-level cold air and continuous increase of near-surface humidity in the afternoon. The surface mesoscale convergence line and mesoscale dew point front contributed to the development and systemization of the squall line by a large degree. The short-time extremely heavy precipitation in Pingshun County was caused by the development of a supercell from thunderstorm cells on the front side of the squall line. The characteristics of sharp increase in vertical integral liquid water content, persistent increase in reflectivity factor and continuous rise in the echo top height appeared about 23 min earlier than the severe precipitation, which has qualitative indicating significance for the nowcasting of short-time heavy precipitation. A quantitative analysis of the radar echo parameters suggests that the“sudden drop”of FV40was a precursor signal of cells’ coalescence and rapid development to the mature stage. The areal change of the echo core at the 6 km height was highly subject to the merging and developing of cells, the rapid change of hydrometeor particles in clouds and the precipitation intensity. Changes in the cross-sectional area of convective cells at different heights can indirectly reflect the changes of liquid particles and ice particles in clouds, which is indicatively meaningful for predicting the coalescing and developing-to-maturing of cells and heavy precipitation 30-45 min earlier.A comprehensive echo parameter prediction model constructed by the random forest principle can predict the magnitude of short-time heavy precipitation 40-50 min in advance. Numerical simulation reveals that large amounts of water vapor existed in the near-surface atmosphere, and that the cells rapidly obtained moisture from the ambient atmosphere and developed rapidly through maternal feeding. The cold cloud zone was narrow, upright and had a high stretch height. The upward motion in clouds was strong and deep, and very rich in liquid water content. The graupel particles had a large vertical distribution range, the coexistence area of graupel and snow was large, the height of raindrops was close to the surface with a wide horizontal scale, and the precipitation efficiency was high. These may be the important elements responsible for the occurrence of the short-time heavy precipitation that exceeded historical extreme values. On the basis of the above analyses, a comprehensive parameter(CP) prediction model is worked out, which can estimate the developing trend of supercells and the intensity of short-time heavy precipitation about 1 h in advance.
文摘The formation of a supercell and its impact on lithium-ion conductivity have been studied through synthesis of three layered oxides,Li_(2)Ca_(1.5)Nb_(3)O_(10),Li_(2)Ca_(1.5)TaNb_(2)O_(10)and Li_(2)Ca_(1.5)Ta_(2)NbO_(10),related to Ruddlesden-Popper structure-type.Neutron diffraction experiments show that these materials feature a supercell,which is significantly larger(√2a×√2b×1c)than that of a typical RuddlesdenPopper oxide.Electrochemical impedance spectroscopy shows that the formation of the new supercell is associated with enhanced lithium-ion conductivity of these materials as compared with the Sranalogue,Li_(2)Sr_(1.5)Nb_(3)O_(10),which lacks the supercell.In addition,a systematic trend is observed in the ionic conductivity:Li_(2)Ca_1.5Ta_(2)NbO10<Li_(2)Ca_(1.5)TaNb_(2)O_(10)<Li_(2)Ca_(1.5)Nb_(3)O_(10).The Arrhenius analysis in the temperature range 25–400°C shows that activation energy for the temperature-dependent rise in conductivity follows a similar trend.Detailed analyses of real and imaginary components of impedance,dielectric properties,tangent loss,and complex modulus show the systematic increase in lithium-ion mobility.The dielectric values mirror the same trend as ionic conductivity,where the most conductive material shows the highest dielectric properties.In addition,the same trend is observed in the peak and dispersion of dielectric loss and complex modulus as a function of angular frequency,indicating a systematic rise in lithium-ion mobility.This fundamental study is aimed at exploring the impact of structural modifications on ionic conductivity in solids.
基金supported by the National Key Research and Development Program of China(Grant Nos.2016YFE0109700 and 2017YFC150190X)Research Program from Science and Technology Committee of Shanghai(Grant No.19dz1200101)National Science Foundation of China(Grant Nos.41575101 and 41975133)。
文摘Idealized supercell storms are simulated with two aerosol-aware bulk microphysics schemes(BMSs),the Thompson and the Chen-Liu-Reisner(CLR),using the Weather Research and Forecast(WRF)model.The objective of this study is to investigate the parameterizations of aerosol effects on cloud and precipitation characteristics and assess the necessity of introducing aerosols into a weather prediction model at fine grid resolution.The results show that aerosols play a decisive role in the composition of clouds in terms of the mixing ratios and number concentrations of liquid and ice hydrometeors in an intense supercell storm.The storm consists of a large amount of cloud water and snow in the polluted environment,but a large amount of rainwater and graupel instead in the clean environment.The total precipitation and rain intensity are suppressed in the CLR scheme more than in the Thompson scheme in the first three hours of storm simulations.The critical processes explaining the differences are the auto-conversion rate in the warm-rain process at the beginning of storm intensification and the low-level cooling induced by large ice hydrometeors.The cloud condensation nuclei(CCN)activation and auto-conversion processes of the two schemes exhibit considerable differences,indicating the inherent uncertainty of the parameterized aerosol effects among different BMSs.Beyond the aerosol effects,the fall speed characteristics of graupel in the two schemes play an important role in the storm dynamics and precipitation via low-level cooling.The rapid intensification of storms simulated with the Thompson scheme is attributed to the production of hail-like graupel.
基金Scientific Plan Project for Guangdong Province (2004B32601007)Key Scientific Project forGuangzhou (06A13043333)
文摘Firstly, typical features of a supercell, which occurred in Guangzhou on August 11, 2004, are discussed by using the new generation weather radar data. V-notch, finger-echo, weak echo region, overfiang and echo-wall are observed from reflectivity products. A vertical cross section of the radial velocity is made along the direction of the low-level inflow and across the maximum reflectivity core, which displays a part of strong updraft and downdraft. Secondly, a 3-D convective storm model is used to simulate the supercell. The maximum reflectivity and the core thickness of the simulated radar echo are 75 dBz and 14km, respectively. These values are more than the counterparts that are detected by radar. The reason is that attenuation is not calculated in the model. The wind field structure is also given when the storm is the strongest. Divergence, caused by thunderstorm outflow, is in the low level. In the middle and high level, convergence is dominant, but the plume is not simulated at the top. Finally, the evolution of the simulated vertical motion is documented. The interaction between the environmental wind and the updraft, which is formed by the convergence on the ground at the beginning, makes the storm stronger. Then, downdraft occurs and grows. When it becomes dominant, the supercell collapses.
基金Supported by Science Research Special Item of Public Welfare Industry (Meteorology) (GYHY200906024)New Meteorological Technology Spreading Item of China Meteorological Administration(CMATG2009MS38)
文摘[Objective] The research aimed to study three-dimensional structure and echo characteristic quantity of a supercell storm in central Gansu on May 30,2005.[Method] By monitoring data of Lanzhou CINRAD/CC Doppler radar,the three-dimensional structure characteristics of a rare supercell storm which happened in central Gansu on May 30,2005 were analyzed.We tried to reveal three-dimensional structure and echo characteristic index of supercell storm in the northeast of Qinghai-Tibet Plateau,and find reason of rare heavy hail appearance.[Result] The large-scale strong storm was formed by the common effect of Mongolia cold vortex,low-level jet and ground cold front.When the development of main echo was mature,on reflectivity factor map,it presented obvious inverted 'V' shaped structure in left front of low-level storm,typical hooked and 'person'-type echo characteristics in the right rear.The bounded weak echo zone(vault) in low level corresponded with strong echo overhanging body in high level.It surpassed 60 dBz in the strong reflectivity factor zone.It presented one weak meso-cyclone on corresponding radial velocity map.The jumped increase characteristic of VIL could be as one of indices for judging that hail started to grow.Almost all storms(VILD ≥4.0 g/m3) had more obvious indication significance than VIL for judging heavy hail(diameter ≥20 mm).[Conclusion] The research provided reference for nowcasting of strong convection weather and artificial hail suppression.
基金provided by the NOAA/Office of Oceanic and Atmospheric Research under the NOAA–University of Oklahoma Cooperative Agreement#NA17RJ1227the U.S.Department of Commerce+2 种基金NSF AGS-1341878the National Natural Science Foundation of China(Project No.41305092)the International S&T Cooperation Program of China(ISTCP)(Grant No.2011DFG23210)
文摘As part of NOAA's "Warn-On-Forecast" initiative, a convective-scale data assimilation and prediction system was developed using the WRF-ARW model and ARPS 3DVAR data assimilation technique. The system was then evaluated using retrospective short-range ensemble analyses and probabilistic forecasts of the tornadic supercell outbreak event that occurred on 24 May 2011 in Oklahoma, USA. A 36-member multi-physics ensemble system provided the initial and boundary conditions for a 3-km convective-scale ensemble system. Radial velocity and reflectivity observations from four WSR-88 Ds were assimilated into the ensemble using the ARPS 3DVAR technique. Five data assimilation and forecast experiments were conducted to evaluate the sensitivity of the system to data assimilation frequencies, in-cloud temperature adjustment schemes, and fixed- and mixed-microphysics ensembles. The results indicated that the experiment with 5-min assimilation frequency quickly built up the storm and produced a more accurate analysis compared with the 10-min assimilation frequency experiment. The predicted vertical vorticity from the moist-adiabatic in-cloud temperature adjustment scheme was larger in magnitude than that from the latent heat scheme. Cycled data assimilation yielded good forecasts, where the ensemble probability of high vertical vorticity matched reasonably well with the observed tornado damage path. Overall, the results of the study suggest that the 3DVAR analysis and forecast system can provide reasonable forecasts of tornadic supercell storms.
文摘A total of 61 supercells with mesocyclones lasting for at least 6 volume scans were investigated. These storm parameters and mesocyclone parameters were counted and compared to determine the salient differences between isolated supercells and embedded supercells in different regions. The results showed that the mesocyclone parameters had different evolution characteristics in three stages of mesocyclone. The storm parameters, mesocyclone parameters and severe weather phenomenon had significantly differences between isolated supercells and embedded supercells. The mesocyclone parameter differences determined the differences in the reflectivity structure and weather phenomenon. The higher base and top of mesocyclone for isolated supercells indicated that the isolated supercells had higher maximum reflectivity, maximum reflectivity height, cell-based vertically integrated liquid and top of storm cell, and significantly higher probability of hail or large hail than the embedded supercells. The descending lower base of mesocyclone at its mature stage in the region of Jianghuai Plain indicated that the supercells in this region had a higher probability of mesocyclone-induced tornado.
文摘Supercell,known as video game company,that is the best at making money,had developed a value of over 10 billion dollars by running only 5 games.All of their games earned more than a billion dollars with over one billion downloads in total.There must be a lot worth studying their strategies.This paper is divided into three parts:analyzing the marketing strategies in their games and advertising,their special way of management,and how they have contributed to the company's huge success.
基金Supported by the National Natural Science Foundation of China(42305013)Joint Research Project for Meteorological Capacity Improvement(23NLTSQ002)+2 种基金China Meteorological Administration Tornado Key Laboratory Fund(TKL202307)China Meteorological Administration Youth Innovation Team Fund(CMA2024QN05)China Meteorological Administration Special Innovation and Development Program(CXFZ2022J003 and CXFZ2022J059)。
文摘Tornadoes are incredibly powerful and destructive natural events,yet the microphysical characteristics of the parent storm and its effects on tornadogenesis remain unclear.This study analyzed polarization radar data of a tornadic supercell that occurred in Jiangsu Province of China on 14 May 2021,in comparison with another tornadic supercell and two non-tornadic supercells that occurred in the same region in 2023.The two tornadic supercells exhibited lower differential reflectivity(ZDR)in the hook echo region compared with the non-tornadic supercells,indicating smaller median drop sizes.A distinct increase in ZDR from the melting of frozen hydrometeors,observed between2.5-and 4.0-km altitude in the non-tornadic storms,was absent in the tornadic cases.The non-tornadic supercells also displayed substantially higher specific differential phase(KDP)below the melting level,likely aroused from enhanced melting and cooling.These findings suggest fundamental microphysical contrasts between tornadic and nontornadic supercells.Specifically,tornadic supercells have smaller droplets and may reduce melting in hook echoes.Moreover,greater separation between the ZDR arc and the KDP foot was observed during tornadogenesis.The vertical gradient of KDP related to the cooling pool strength of the hook echo,regulating rear-flank downdraft thermodynamics.Despite the limited number of cases investigated,the findings of this study indicate that monitoring ZDR,KDP,and drop size distribution trends could assist with tornado prediction and warnings.
基金supported by the National Natural Science Foundation of China(Grant No.41275008)the Basic Research Fund of the Chinese Academy of Meteorological Sciences(Grant No.2016Z002)the National Key Basic Research Program of China(Grant No.2014CB441403)
文摘Based on the Weather Research Forecasting(WRF) model that features charging and discharging parameterization,relationships between tornado, hail and lightning were investigated for a tornado-producing(EF4 intensity) supercell thunderstorm over Yancheng City in Jiangsu Province, China, on 23 June 2016. Based on a sounding at 0800, there was a low lifting condensation level, substantial convective available potential energy(CAPE), and strong vertical wind shear near Yancheng City, which promote supercell development. At 1400, observations revealed that hail production and a dramatic increase of positive cloud-to-ground flash rates occurred simultaneously, maximizing five minutes later. The tornado occurred 30 min after the hail production. The time of minimum positive cloud-to-ground flash rates was 15 min later. The simulation indicated that the tornadic supercell moved eastward and that positive cloud-to-ground flash rates increased dramatically at 1400, the same as observed, but their maximum was 5 min later than observed. The simulated updraft volume peaked at 1425 and the simulated downdraft volume maximized5 min later, when the mesocyclone formed. Simulated reflectivities showed no hook echo and horizontal winds for different height at mid-low levels had a different cyclonic shear at 1430, favorable to mesocyclone formation. Based on the simulated results,the region of positively charged graupel ascended resulting from the region of high liquid water content was lifted by the strong updraft, forming a mid-level strong positive charge region. A lower negative charge region formed by the inductive charging mechanism of collisions between graupel and droplets at the bottom of the cloud, conducive to positive cloud-to-ground flashes.
基金Supported by the National Special Fund for Meteorology(GYHY200706033)National Natural Science Foundation of China under Grant Nos.40505004,40405012,and 40333025+1 种基金National Fundamental Research"973"Program of China(2004CB418301) the Natioual Meteorological Center of China TIGGE Program(GYHY(QX) 2007-232 6-1)
文摘In this study,single Doppler radar data were used to examine the structure and evolution of a high precipitation(HP) supercell embedded in a cold front near Jianyang,Fujian Province on 12 April 2003.The synoptic environment was characterized by high humidity at low levels,moderate CAPE(convective available potential energy;1601 J kg^(-1)),moderate wind shear(22 m s^(-1) in 0-5 km),and veering of the horizontal winds with height,similar to those HP supercells previously observed in midlatitudes.In addition,the calculated bulk Richardson number was only 16,suggesting favorable environmental conditions for supercell development. The documented storm was located at the leading edge of a squall line.It was initiated from a single cell at 0732 UTC.It evolved into a bow shape gradually,and then split into two separate storms along the storm motion direction through the apex of the bow echo.The left-moving storm dissipated rapidly, but the right-moving storm strengthened and evolved into an HP supercell,lasting for more than 1 h.The radar reflectivity of the HP supercell during its mature stage showed a typical low-level hook echo at the front flank of the storm with its maximum reflectivity beyond 70 dBZ.Above the hook echo,an elevated maximum reflectivity core accompanied by a bounded weak-echo region(BWER) and a down-shear echo overhanging aloft were clearly identified.The elevated BWER,marked by 40-50-dBZ reflectivity values,was surrounded by values of 60-70 dBZ.A well-defined mesocyclone lasted about 1 h and was collocated with the low-level WER and middle-level BWER.The radar-estimated time-height profiles of mesocyclone rotational velocity and diameter indicated that this mesocyclone formed initially at middle level,then deepened and strengthened rapidly with the vertical depth deeper than 8 km and rotational velocity stronger than 24 m s^(-1) at the mature stage,and later decayed rapidly.The GBVTD(ground-based velocity track display)-derived primary circulation showed that the maximum tangential wind of the mesocyclone appeared at middle level (3-5 km) with a value of about 20 m s^(-1).The mean radial wind field was characterized with a low-level inflow below 4 km,and accompanied by stronger updraft near the mesocyclone center.Between 4 and 7 km.the tangential wind profile resembled a Rankine combined vortex with the radius of maximum wind (RMW) at 3 km.and there was outflow/inflow inside/outside of the RMW.Correspondingly,the vertical velocity indicated a stronger updraft at the RMW and a weak downdraft inside the RMW.Above 7 km,the outflow strengthened and extended outside the RMW. In summary,the reflectivity structures of the storm and the accompanying mesocyclone were similar to those midlatitude HP supercells proposed in Miller's paper in 1994.However,the evolution of the HP supercell,including its three stages:ordinary storm,bow echo,and storm splitting,was quite different from those documented before.
基金Supported by the National Natural Science Foundation of China under Grant No. 40575012Department of Science and Technology of Shandong Province under Grant No. 2007GG20008001
文摘Three supercell storms on 24 June 2004(0624),28 June 2003(0628),and 27 September 2002(0927) induced different damages in Shandong Province.Storm 0927 was inferior in size and intensity to storms 0628 and 0624.The structure and evolvement of the three storms were analyzed in detail based on the WSR98D radar data in combination with weather charts.The results show that mesoscale surface convergence triggered release of instable energy,which resulted in severe convection.During the development stage,storms 0927,0628,and 0624 displayed multi-cell propagation,single-cell evolution,and multi-cell mergence,respectively.The storm tracks were similar:they were all right-moving supercell storms,i.e.,moving at an angle of 30°-70° to the right of the mean wind and at a speed of about 45%-70% of the mean wind speed.In the mature stage,the maximum reflectivity appeared at the low level in storm 0927,mid level in storm 0628,and mid-upper level in storm 0624.These storms possessed almost all typical features of supercell storms:weak echo region(WER),bounded weak echo region(BWER),and mesocyclone.An organized mesocyclone formed at the middle height of an updraft,deepened gradually downward and upward,and became a typical mid-level mesocyclone with strong updrafts.The vertical structures of airflows in the three storms were similar,i.e.,significant convergence at low level,nearly pure rotation at mid level,and divergent rotation at upper level.However,signatures of mid-level horizontal airflows in the three storms were different:at mid level,there was a single vortex in storm 0628,but a double-vortex flow pattern was seen in storms 0927 and 0624.The horizontal structure of the double-vortex flow was hard to be blown away by the environmental airflow,and thus the storms could persist for a longer period of time than the single vortex storm.
基金Item Sponsored by National Natural Science Foundation of China(51271163,51471148)
文摘The structure stability, elastic property and electronic structure of a-Fe supercell with La atom were inves- tigated by first-principles, in which, generalized gradient approximation (GGA) with the Perdew Burke Ernzerhof (PBE) was used as exchange-correlation functional, a-Fe supercells with La atom include a-Fe supercell with La atom in octahedral interstitial solid solute (La-OISS), that with La atom in tetrahedral interstitial solid solute (La-TISS) and that with La atom in substitutional solid solute (La-SSS). The results show that the La-SSS a-Fe supercell is more stable than La-OISS one. The resistance to volume change, reversible deformation and stiffness of La-OISS a-Fe supercell are stronger than those of La-SSS one. Moreover, the degrees of anisotropy and ionization in La-SSS a-Fe supercell are both stronger than those in La-OISS one. The bonding strength between La atom and Fe atom in La-SSS a-Fe supercell is larger than that in La-OISS one.