We construct and analyse a nodal O(h^4)-superconvergent FE scheme for approximating the Poisson equation with homogeneous boundary conditions in three-dimensional domains by means of piecewise trilinear functions. T...We construct and analyse a nodal O(h^4)-superconvergent FE scheme for approximating the Poisson equation with homogeneous boundary conditions in three-dimensional domains by means of piecewise trilinear functions. The scheme is based on averaging the equations that arise from FE approximations on uniform cubic, tetrahedral, and prismatic partitions. This approach presents a three-dimensional generalization of a two-dimensional averaging of linear and bilinear elements which also exhibits nodal O(h^4)-superconvergence (ultracon- vergence). The obtained superconvergence result is illustrated by two numerical examples.展开更多
基金supported by Project no. 211512 from the Academy of Finlandsupported by Academy Research Fellowship no. 208628+1 种基金Project no. 124619 from the Academy of Finlandsupported by Grant IAA 100190803 of the Academy of Sciences of the Czech Republic and Institutional Research Plan AV0Z 10190503
文摘We construct and analyse a nodal O(h^4)-superconvergent FE scheme for approximating the Poisson equation with homogeneous boundary conditions in three-dimensional domains by means of piecewise trilinear functions. The scheme is based on averaging the equations that arise from FE approximations on uniform cubic, tetrahedral, and prismatic partitions. This approach presents a three-dimensional generalization of a two-dimensional averaging of linear and bilinear elements which also exhibits nodal O(h^4)-superconvergence (ultracon- vergence). The obtained superconvergence result is illustrated by two numerical examples.