The tokamak HT-7U project has been funded as a Chinese national project since 1998. The main object of the project is to build a nuclear fusion experimental device with divertor configuration, which is designed by the...The tokamak HT-7U project has been funded as a Chinese national project since 1998. The main object of the project is to build a nuclear fusion experimental device with divertor configuration, which is designed by the Institute of Plasma Physics, the Chinese Academy of Sciences (ASIPP). It is a full superconducting device, consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF) coil. During the operation of the device, the operational parameter of device should be checked by technical diagnosis. This paper describes the design of circuit for checldng short between every two parts of the HT7U device. The main contents of design include circuit of data acquisition and data processing of computer.展开更多
An effective method for eddy current calculation has been developed for EAST’s new divertor by using ANSYS.A 3D model of a double null divertor for the EAST device was built to evaluate eddy currents and electromagne...An effective method for eddy current calculation has been developed for EAST’s new divertor by using ANSYS.A 3D model of a double null divertor for the EAST device was built to evaluate eddy currents and electromagnetic(EM)forces on these components.The main input to the model is the plasma current and poloidal field coil currents,which are loaded into the model using experimental data measured from the EAST discharges.These currents generate magnetic fields that match those producing an EAST discharge,and the time variation of these fields produces the eddy currents in the divertors,along with from the resulting EM forces.In addition,the first 10 time steps were discussed for the eddy current generation and changing trend.It indicates that a static analysis before a transient mode start can solve the eddy current origination in the initial time steps.With this method,the EM transient response of EAST’s new divertor can be predicted based on ANSYS simulations.Furthermore,the method is also an effective approach to estimate the EM results for the in-vessel components of a fusion reactor during a disruption.展开更多
文摘The tokamak HT-7U project has been funded as a Chinese national project since 1998. The main object of the project is to build a nuclear fusion experimental device with divertor configuration, which is designed by the Institute of Plasma Physics, the Chinese Academy of Sciences (ASIPP). It is a full superconducting device, consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF) coil. During the operation of the device, the operational parameter of device should be checked by technical diagnosis. This paper describes the design of circuit for checldng short between every two parts of the HT7U device. The main contents of design include circuit of data acquisition and data processing of computer.
基金supported by the National Basic Research Program of China("973"Program)(Grant No.2013GB10200)
文摘An effective method for eddy current calculation has been developed for EAST’s new divertor by using ANSYS.A 3D model of a double null divertor for the EAST device was built to evaluate eddy currents and electromagnetic(EM)forces on these components.The main input to the model is the plasma current and poloidal field coil currents,which are loaded into the model using experimental data measured from the EAST discharges.These currents generate magnetic fields that match those producing an EAST discharge,and the time variation of these fields produces the eddy currents in the divertors,along with from the resulting EM forces.In addition,the first 10 time steps were discussed for the eddy current generation and changing trend.It indicates that a static analysis before a transient mode start can solve the eddy current origination in the initial time steps.With this method,the EM transient response of EAST’s new divertor can be predicted based on ANSYS simulations.Furthermore,the method is also an effective approach to estimate the EM results for the in-vessel components of a fusion reactor during a disruption.