A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet dur...A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications.展开更多
A 5.8 T cryogen-free superconducting magnet (SCM) system with a warm bore hole of 160 mm in diameter, used for gyrotrons operating in the frequency range from 68 GHz to 140 GHz, is installed on the site of the HL-2A...A 5.8 T cryogen-free superconducting magnet (SCM) system with a warm bore hole of 160 mm in diameter, used for gyrotrons operating in the frequency range from 68 GHz to 140 GHz, is installed on the site of the HL-2A tokamak. The SCM consists of two separate solenoidal magnetic coils connected in series, a 4.2 K Gifford-McMahon (GM) refrigerator, a com- pressor, a coil power supply and two temperature monitors. The performance, test and preliminary experimental results of this SCM system are described in this paper. The magnetic field distribu- tion was measured along the axis, and a dummy tube was used for adjusting the magnet system. Finally, the magnet was used for the operation of a 68 GHz/500 kW gyrotron, which is part of an electron cyclotron resonance heating (ECRH) system. With an additional auxiliary coil and after adjusting tile magnet system, a maximum output power for the ECRH system of up to 400 kW was achieved.展开更多
A pool cooled experimental magnet based on the copper stabilized NbTi supercon- ducting wire was designed, fabricated and tested, in order to evaluate the engineering design of the dipole superconducting magnet for th...A pool cooled experimental magnet based on the copper stabilized NbTi supercon- ducting wire was designed, fabricated and tested, in order to evaluate the engineering design of the dipole superconducting magnet for the collector ring (CR) of the facility for antiproton and ion research (FAIR) project. In this paper, the experimental setup including quench protection system was presented. Performance of the liquid helium pool cooled test was introduced. All of the results indicate both the performance of conductor and the experimental superconducting magnet under low temperature is stable, which suggests the engineering design are feasible for the formal magnet in CR of the FAIR project.展开更多
Unpredictable power fluctuation and fault ridethrough capability attract increased attention as two uncertain major factors in doubly-fed induction generators(DFIGs)integrated DC power system.Present solutions usually...Unpredictable power fluctuation and fault ridethrough capability attract increased attention as two uncertain major factors in doubly-fed induction generators(DFIGs)integrated DC power system.Present solutions usually require complicated cooperation comprising multiple modules of energy storage,current control,and voltage stabilizer.To overcome the drawbacks of existing solutions,this paper proposes a superconducting magnetic energy storage(SMES)integrated currentsource DC/DC converter(CSDC).It is mainly composed of a current-source back-to-back converter,and the SMES is tactfully embedded in series with the intermediate DC link.The proposed SMES-CSDC is installed in front of the DC-DFIG to carry out its dual abilities of load voltage stabilization under multifarious transient disturbances and power regulation under wind speed variations.Compared with the existing DC protection devices,the SMES-CSDC is designed on the basis of unique current-type energy storage.It has the advantages of fast response,extensive compensation range,concise hardware structure,and straightforward control strategy.The feasibility of the SMESCSDC is implemented via a scaled-down experiment,and its effectiveness for DC-DFIG protection is verified by a large-scale DC power system simulation.展开更多
To achieve the utilization of the abandoned ultrafine ilmenite(-20 μm) produced in the titanium magnetite processing plant in Panzhihua,the superconducting high-gradient magnetic separation(SMS) technology was propos...To achieve the utilization of the abandoned ultrafine ilmenite(-20 μm) produced in the titanium magnetite processing plant in Panzhihua,the superconducting high-gradient magnetic separation(SMS) technology was proposed in this study.After optimizing the conditions of magnetic intensity,feeding and pulsation,an SMS concentrate with TiO_(2) grade of 16.03% and TiO_(2) recovery of 66.39% was obtained through one roughing-one cleaning pre-concentration flowsheet.The specific magnetic force and magnetic force were calculated and analysed to illustrate the pre-concentration mechanism,and the results revealed that the combination of high magnetic field and strong pulsating resulted in the effective preconcentration of the ultrafine ilmenite in the SMS process.In addition,the magnetic force analysis indicated that the high magnetic intensity and high magnetic gradient are the key factors of the SMS technology.Furthermore,the EDS-Mapping detection certified that the ultrafine ilmenite was concentrated from the gangue minerals using SMS technology.展开更多
The fast-response feature from a superconducting magnetic energy storage(SMES)device is favored for suppressing instantaneous voltage and power fluctuations,but the SMES coil is much more expensive than a conventional...The fast-response feature from a superconducting magnetic energy storage(SMES)device is favored for suppressing instantaneous voltage and power fluctuations,but the SMES coil is much more expensive than a conventional battery energy storage device.In order to improve the energy utilization rate and reduce the energy storage cost under multiple-line power distribution conditions,this paper investigates a new interline DC dynamic voltage restorer(IDC-DVR)scheme with one SMES coil shared among multiple compensating circuits.In this new concept,an improved current-voltage(I/V)chopper assembly,which has a series of input/output power ports,is introduced to connect the single SMES coil with multiple power lines,and thereby satisfy the independent energy exchange requirements of any line to be compensated.Specifically,if two or more power lines have simultaneous compensating demands,the SMES coil can be selectively controlled to compensate the preferable line according to the priority order of the line.The feasibility of the proposed scheme is technically verified to maintain the transient voltage stability in multiple-line voltage swell and sag cases caused by either output voltage fluctuations from external power sources or power demand fluctuations from local sensitive loads.The simulation results provide a technical basis to develop a cost-effective SMES-based IDC-DVR for use in various DC distribution networks.展开更多
In the upgrade project of the Beijing Electron Positron Collider (BEPC Ⅱ ), three superconducting magnets are employed to realize the goal of two orders of magnitude higher luminosity. A cryogenic system with a tot...In the upgrade project of the Beijing Electron Positron Collider (BEPC Ⅱ ), three superconducting magnets are employed to realize the goal of two orders of magnitude higher luminosity. A cryogenic system with a total capacity of 0.5 kW at 4.5 K was built at the Institute of High Energy Physics (IHEP) to support the operations of these superconducting devices. For preparing the commissioning of the system, the refrigeration process was simulated and analyzed numerically. The numerical model was based on the latest engineering progress and focused on the normal operation mode. The pressure and temperature profiles of the cryogenic system are achieved with the simulation. The influence of the helium mass flow rates to cool superconducting magnets on the thermodynamic parameters of their normal operation is also studied and discussed in this paper.展开更多
The vertical stability of a magnetic tip over a superconducting material is investigated by using the critical state and the frozen image models. The analytical expressions of the stiffness and the vibration frequency...The vertical stability of a magnetic tip over a superconducting material is investigated by using the critical state and the frozen image models. The analytical expressions of the stiffness and the vibration frequency about the equilibrium position are derived in term of the geometrical parameters of the magnet/superconductor system. It is found that the stability of the system depends on the shape of the superconductor as well as its thickness.展开更多
柔性直流配电系统中定功率控制的换流器具有恒功率负载特性,会降低系统阻尼,对系统的稳定性产生不利影响。针对该问题,在直流配电系统中加入超导磁储能SMES(superconducting magnetic energy storage)装置来提高系统的稳定性。推导了柔...柔性直流配电系统中定功率控制的换流器具有恒功率负载特性,会降低系统阻尼,对系统的稳定性产生不利影响。针对该问题,在直流配电系统中加入超导磁储能SMES(superconducting magnetic energy storage)装置来提高系统的稳定性。推导了柔性直流配电系统的反馈控制模型,采用频域分析法研究了换流器恒功率负载特性对系统稳定性的影响,并结合数学模型和频域分析,指出SMES装置能够为电网提供正阻尼,增大了系统开环传递函数在剪切频率处的相位裕度,从而改善了系统稳定性。为防止超导磁体两端电压过高,SMES装置与直流配电网连接的DC/DC换流器需具备一定的电压调节性能,因此研究了采用模块化多电平DC/DC换流器DC-MMC(modular multilevel DC/DC converter)的SMES装置,通过调节子模块个数灵活设置换流器电压变比,在实现换流器能量双向流动的同时控制超导磁体两端电压,以保护储能装置。最后通过时域仿真波形验证了采用DC-MMC的SMES装置在提高柔性直流配电系统稳定性方面的可行性和有效性。展开更多
The stresses in the coupling superconducting solenoid coil assembly,which is applied in the Muon Ionization Cooling Experiment (MICE),are critical for the structure design and mechanical stability because of a large d...The stresses in the coupling superconducting solenoid coil assembly,which is applied in the Muon Ionization Cooling Experiment (MICE),are critical for the structure design and mechanical stability because of a large diameter and relative high magnetic field.This paper presents an analytical stress solution for the MICE coupling coil assembly.The stress due to winding tension is calculated by assuming the coil package as a set of combined cylinders.The thermal and electromechanical stresses are obtained by solving the partial differential equations of displacement based on the power series expansion method.The analytical stress solution is proved to be feasible by calculating stresses in a tested superconducting solenoid with 2.58 m bore at room temperature.The analytical result of the MICE coupling coil is in good agreement with that of the finite element which shows that the transverse shear stress induced by Lorentz force is principally dominant to magnet instability.展开更多
A modern view of the properties of chemical elements has confirmed the theory of the hot origin of the Earth. The next step in developing this theory was the hypothesis of the initial hydride Earth. In this work, we a...A modern view of the properties of chemical elements has confirmed the theory of the hot origin of the Earth. The next step in developing this theory was the hypothesis of the initial hydride Earth. In this work, we attempted to find additional evidence for this hypothesis and show additional effects that flow from it. The effect of the physical properties of atoms and ions on their behavior during the formation of the Earth was studied. The maximum contribution to the distribution of elements was made by those elements whose content in the original protoplanets of the disk was the maximum. Correlation dependence is obtained, which allows one to calculate the distribution of elements in the protoplanetary disk. It was shown that hydrogen was the main element in the proto substance located in the zone of the Earth’s formation. In this case, various chemical compounds formed, most represented by hydrogen compounds—hydrides. Since the pressure inside the Earth is 375 GPa, this factor forces the chemical compounds to adopt stoichiometry and structure that would not be available in atmospheric conditions. It is shown that many chemical elements at high pressure in a hydrogen medium form simple hydrides and super hydrides—polyhydrides with high hydrogen content. Pressure leads to a higher density of matter inside the planet. Given the possibility of forming polyhydrides, there is the possibility of binding the initially available hydrogen in an amount that can reach 49.3 mole%. Young Earth could contain about 10.7 mass% of hydrogen in hydrides, polyhydrides, and adsorbed form is almost twice higher than previous estimates. This fact additionally confirms the theory of the original hydride Earth. In hydrides, the occurrence of the phenomenon of superconductivity was discovered. Polyhydrides were shown as potential superconductors with a high critical temperature above 200 K. We, based on these data, hypothesized the presence of superconducting properties in the Earth’s core, which explains the presence of a magnetic field in the Earth, as well as the unevenness and instability of this field and the possibility of migration of the Earth’s poles. The fact that the Earth has a hydroid core causes its change in time due to the instability of hydrides. Arranged several possible models of the destruction of the Earth’s core. The calculations showed that both models give close results. These results give predictions that can be measured. The proposed models also made it possible to estimate the initial size of the Earth. Possible ways of further testing the hypothesis of the initial hydride Earth is shown.展开更多
This article deals with problems relevant to implementation of magnetically stabilized beds (MSB) as separation devices. The main issues discussed are: bed mechanics, bed structure, possibilities to create controll...This article deals with problems relevant to implementation of magnetically stabilized beds (MSB) as separation devices. The main issues discussed are: bed mechanics, bed structure, possibilities to create controllable filter media, etc. As examples several separation techniques are discussed: dust filtration-magnetic and non-magnetic, ion-exchange, copper cementation, yeast filtration from biological liquids, particle separation by density and magnetic properties, dangerous wastes removal. Only key publications will be quoted that provide a basis for further reading and study and relevant information.展开更多
基金the National Natural Science Foundation of China(Nos.11932008 and 11672120)the Fundamental Research Funds for the Central Universities of China(No.lzujbky-2022-kb01)。
文摘A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications.
基金supported by the Intemational Thermonuclear Experimental Reactor Special Fund of China(No.2009GB102001)Cooperation on Key Technology of Plasma Heating in Tokamak(No.2010DFA63860)Critical Technology Research of Nuclear Fusion and Physical Experiments and on HL-2A Tokamak(No.H660003)
文摘A 5.8 T cryogen-free superconducting magnet (SCM) system with a warm bore hole of 160 mm in diameter, used for gyrotrons operating in the frequency range from 68 GHz to 140 GHz, is installed on the site of the HL-2A tokamak. The SCM consists of two separate solenoidal magnetic coils connected in series, a 4.2 K Gifford-McMahon (GM) refrigerator, a com- pressor, a coil power supply and two temperature monitors. The performance, test and preliminary experimental results of this SCM system are described in this paper. The magnetic field distribu- tion was measured along the axis, and a dummy tube was used for adjusting the magnet system. Finally, the magnet was used for the operation of a 68 GHz/500 kW gyrotron, which is part of an electron cyclotron resonance heating (ECRH) system. With an additional auxiliary coil and after adjusting tile magnet system, a maximum output power for the ECRH system of up to 400 kW was achieved.
基金supported by Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) (MOU GSI ACC 2005 01)
文摘A pool cooled experimental magnet based on the copper stabilized NbTi supercon- ducting wire was designed, fabricated and tested, in order to evaluate the engineering design of the dipole superconducting magnet for the collector ring (CR) of the facility for antiproton and ion research (FAIR) project. In this paper, the experimental setup including quench protection system was presented. Performance of the liquid helium pool cooled test was introduced. All of the results indicate both the performance of conductor and the experimental superconducting magnet under low temperature is stable, which suggests the engineering design are feasible for the formal magnet in CR of the FAIR project.
基金supported by the National Natural Science Foundation of China(No.51807128)。
文摘Unpredictable power fluctuation and fault ridethrough capability attract increased attention as two uncertain major factors in doubly-fed induction generators(DFIGs)integrated DC power system.Present solutions usually require complicated cooperation comprising multiple modules of energy storage,current control,and voltage stabilizer.To overcome the drawbacks of existing solutions,this paper proposes a superconducting magnetic energy storage(SMES)integrated currentsource DC/DC converter(CSDC).It is mainly composed of a current-source back-to-back converter,and the SMES is tactfully embedded in series with the intermediate DC link.The proposed SMES-CSDC is installed in front of the DC-DFIG to carry out its dual abilities of load voltage stabilization under multifarious transient disturbances and power regulation under wind speed variations.Compared with the existing DC protection devices,the SMES-CSDC is designed on the basis of unique current-type energy storage.It has the advantages of fast response,extensive compensation range,concise hardware structure,and straightforward control strategy.The feasibility of the SMESCSDC is implemented via a scaled-down experiment,and its effectiveness for DC-DFIG protection is verified by a large-scale DC power system simulation.
基金financial support from the Joint Fund (Key program U2067201) for Nuclear Technology Innovation Sponsored by the National Natural Science Foundation of China and the China National Nuclear CorporationNational key research and development program (2019YFC1907702) Sponsored by MOSTthe Fundamental Research Funds for the Central Universities (N2001013) for supporting this research。
文摘To achieve the utilization of the abandoned ultrafine ilmenite(-20 μm) produced in the titanium magnetite processing plant in Panzhihua,the superconducting high-gradient magnetic separation(SMS) technology was proposed in this study.After optimizing the conditions of magnetic intensity,feeding and pulsation,an SMS concentrate with TiO_(2) grade of 16.03% and TiO_(2) recovery of 66.39% was obtained through one roughing-one cleaning pre-concentration flowsheet.The specific magnetic force and magnetic force were calculated and analysed to illustrate the pre-concentration mechanism,and the results revealed that the combination of high magnetic field and strong pulsating resulted in the effective preconcentration of the ultrafine ilmenite in the SMS process.In addition,the magnetic force analysis indicated that the high magnetic intensity and high magnetic gradient are the key factors of the SMS technology.Furthermore,the EDS-Mapping detection certified that the ultrafine ilmenite was concentrated from the gangue minerals using SMS technology.
基金This work was supported in part by the National Natural Science Foundation of China under Grant No.51807128State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant No.LAPS20017.
文摘The fast-response feature from a superconducting magnetic energy storage(SMES)device is favored for suppressing instantaneous voltage and power fluctuations,but the SMES coil is much more expensive than a conventional battery energy storage device.In order to improve the energy utilization rate and reduce the energy storage cost under multiple-line power distribution conditions,this paper investigates a new interline DC dynamic voltage restorer(IDC-DVR)scheme with one SMES coil shared among multiple compensating circuits.In this new concept,an improved current-voltage(I/V)chopper assembly,which has a series of input/output power ports,is introduced to connect the single SMES coil with multiple power lines,and thereby satisfy the independent energy exchange requirements of any line to be compensated.Specifically,if two or more power lines have simultaneous compensating demands,the SMES coil can be selectively controlled to compensate the preferable line according to the priority order of the line.The feasibility of the proposed scheme is technically verified to maintain the transient voltage stability in multiple-line voltage swell and sag cases caused by either output voltage fluctuations from external power sources or power demand fluctuations from local sensitive loads.The simulation results provide a technical basis to develop a cost-effective SMES-based IDC-DVR for use in various DC distribution networks.
文摘In the upgrade project of the Beijing Electron Positron Collider (BEPC Ⅱ ), three superconducting magnets are employed to realize the goal of two orders of magnitude higher luminosity. A cryogenic system with a total capacity of 0.5 kW at 4.5 K was built at the Institute of High Energy Physics (IHEP) to support the operations of these superconducting devices. For preparing the commissioning of the system, the refrigeration process was simulated and analyzed numerically. The numerical model was based on the latest engineering progress and focused on the normal operation mode. The pressure and temperature profiles of the cryogenic system are achieved with the simulation. The influence of the helium mass flow rates to cool superconducting magnets on the thermodynamic parameters of their normal operation is also studied and discussed in this paper.
文摘The vertical stability of a magnetic tip over a superconducting material is investigated by using the critical state and the frozen image models. The analytical expressions of the stiffness and the vibration frequency about the equilibrium position are derived in term of the geometrical parameters of the magnet/superconductor system. It is found that the stability of the system depends on the shape of the superconductor as well as its thickness.
文摘柔性直流配电系统中定功率控制的换流器具有恒功率负载特性,会降低系统阻尼,对系统的稳定性产生不利影响。针对该问题,在直流配电系统中加入超导磁储能SMES(superconducting magnetic energy storage)装置来提高系统的稳定性。推导了柔性直流配电系统的反馈控制模型,采用频域分析法研究了换流器恒功率负载特性对系统稳定性的影响,并结合数学模型和频域分析,指出SMES装置能够为电网提供正阻尼,增大了系统开环传递函数在剪切频率处的相位裕度,从而改善了系统稳定性。为防止超导磁体两端电压过高,SMES装置与直流配电网连接的DC/DC换流器需具备一定的电压调节性能,因此研究了采用模块化多电平DC/DC换流器DC-MMC(modular multilevel DC/DC converter)的SMES装置,通过调节子模块个数灵活设置换流器电压变比,在实现换流器能量双向流动的同时控制超导磁体两端电压,以保护储能装置。最后通过时域仿真波形验证了采用DC-MMC的SMES装置在提高柔性直流配电系统稳定性方面的可行性和有效性。
基金Supported by Funds of cryogenics and superconductivity technology innovation project under "985-2 Plan" of Harbin Institute of Technology,Chinathe Office of Science,US Department of Energy under DOE contract DE-AC02-05CH11231
文摘The stresses in the coupling superconducting solenoid coil assembly,which is applied in the Muon Ionization Cooling Experiment (MICE),are critical for the structure design and mechanical stability because of a large diameter and relative high magnetic field.This paper presents an analytical stress solution for the MICE coupling coil assembly.The stress due to winding tension is calculated by assuming the coil package as a set of combined cylinders.The thermal and electromechanical stresses are obtained by solving the partial differential equations of displacement based on the power series expansion method.The analytical stress solution is proved to be feasible by calculating stresses in a tested superconducting solenoid with 2.58 m bore at room temperature.The analytical result of the MICE coupling coil is in good agreement with that of the finite element which shows that the transverse shear stress induced by Lorentz force is principally dominant to magnet instability.
文摘A modern view of the properties of chemical elements has confirmed the theory of the hot origin of the Earth. The next step in developing this theory was the hypothesis of the initial hydride Earth. In this work, we attempted to find additional evidence for this hypothesis and show additional effects that flow from it. The effect of the physical properties of atoms and ions on their behavior during the formation of the Earth was studied. The maximum contribution to the distribution of elements was made by those elements whose content in the original protoplanets of the disk was the maximum. Correlation dependence is obtained, which allows one to calculate the distribution of elements in the protoplanetary disk. It was shown that hydrogen was the main element in the proto substance located in the zone of the Earth’s formation. In this case, various chemical compounds formed, most represented by hydrogen compounds—hydrides. Since the pressure inside the Earth is 375 GPa, this factor forces the chemical compounds to adopt stoichiometry and structure that would not be available in atmospheric conditions. It is shown that many chemical elements at high pressure in a hydrogen medium form simple hydrides and super hydrides—polyhydrides with high hydrogen content. Pressure leads to a higher density of matter inside the planet. Given the possibility of forming polyhydrides, there is the possibility of binding the initially available hydrogen in an amount that can reach 49.3 mole%. Young Earth could contain about 10.7 mass% of hydrogen in hydrides, polyhydrides, and adsorbed form is almost twice higher than previous estimates. This fact additionally confirms the theory of the original hydride Earth. In hydrides, the occurrence of the phenomenon of superconductivity was discovered. Polyhydrides were shown as potential superconductors with a high critical temperature above 200 K. We, based on these data, hypothesized the presence of superconducting properties in the Earth’s core, which explains the presence of a magnetic field in the Earth, as well as the unevenness and instability of this field and the possibility of migration of the Earth’s poles. The fact that the Earth has a hydroid core causes its change in time due to the instability of hydrides. Arranged several possible models of the destruction of the Earth’s core. The calculations showed that both models give close results. These results give predictions that can be measured. The proposed models also made it possible to estimate the initial size of the Earth. Possible ways of further testing the hypothesis of the initial hydride Earth is shown.
文摘This article deals with problems relevant to implementation of magnetically stabilized beds (MSB) as separation devices. The main issues discussed are: bed mechanics, bed structure, possibilities to create controllable filter media, etc. As examples several separation techniques are discussed: dust filtration-magnetic and non-magnetic, ion-exchange, copper cementation, yeast filtration from biological liquids, particle separation by density and magnetic properties, dangerous wastes removal. Only key publications will be quoted that provide a basis for further reading and study and relevant information.