A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L^2 projection method, the superconvergence results for the v...A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L^2 projection method, the superconvergence results for the velocity and pressure are obtained with a penalty parameter larger than that of the classical penalty scheme. The numerical experiments are carried out to confirm the theoretical results.展开更多
Numerical experiments are given to verify the theoretical results for superconvergence of the elliptic problem by global and local L2-Projection methods.
The superconvergence in the finite element method is a phenomenon in which the fi-nite element approximation converges to the exact solution at a rate higher than the optimal order error estimate. Wang proposed and an...The superconvergence in the finite element method is a phenomenon in which the fi-nite element approximation converges to the exact solution at a rate higher than the optimal order error estimate. Wang proposed and analyzed superconvergence of the conforming finite element method by L2-projections. However, since the conforming finite element method (CFEM) requires a strong continuity, it is not easy to construct such finite elements for the complex partial differential equations. Thus, the nonconforming finite element method (NCFEM) is more appealing computationally due to better stability and flexibility properties compared to CFEM. The objective of this paper is to establish a general superconvergence result for the nonconforming finite element approximations for second-order elliptic problems by L2-projection methods by applying the idea presented in Wang. MATLAB codes are published at https://github.com/annaleeharris/Superconvergence-NCFEM for anyone to use and to study. The results of numerical experiments show great promise for the robustness, reliability, flexibility and accuracy of superconvergence in NCFEM by L2- projections.展开更多
The convergence analysis of the lower order nonconforming element pro- posed by Park and Sheen is applied to the second-order elliptic problem under anisotropic meshes. The corresponding error estimation is obtained. ...The convergence analysis of the lower order nonconforming element pro- posed by Park and Sheen is applied to the second-order elliptic problem under anisotropic meshes. The corresponding error estimation is obtained. Moreover, by using the interpo- lation postprocessing technique, a global superconvergence property for the discretization error of the postprocessed discrete solution to the solution itself is derived. Numerical results are also given to verify the theoretical analysis.展开更多
The superconvergence in the finite element method is a phenomenon in which the finite element approximation converges to the exact solution at a rate higher than the optimal order error estimate. Wang proposed and ana...The superconvergence in the finite element method is a phenomenon in which the finite element approximation converges to the exact solution at a rate higher than the optimal order error estimate. Wang proposed and analyzed superconvergence of the conforming finite element method by L2-projections. The goal of this paper is to perform numerical experiments using MATLAB to support and to verify the theoretical results in Wang for the superconvergence of the conforming finite element method (CFEM) for the second order elliptic problems by L2-projection methods. MATLAB codes are published at https://github.com/annaleeharris/Superconvergence-CFEM for anyone to use and to study.展开更多
The regular condition (there exists a constant c independent of the element K and the mesh such that hK/ρK ≤ c, where hK and ρK are diameters of K and the biggest ball contained in K, respectively) or the quasi-uni...The regular condition (there exists a constant c independent of the element K and the mesh such that hK/ρK ≤ c, where hK and ρK are diameters of K and the biggest ball contained in K, respectively) or the quasi-uniform condition is a basic assumption in the analysis of classical finite elements. In this paper, the supercloseness for consistency error and the superconvergence estimate at the central point of the element for the Wilson nonconforming element in solving second-order elliptic boundary value problem are given without the above assumption on the meshes. Furthermore the global superconvergence for the Wilson nonconforming element is obtained under the anisotropic meshes. Lastly, a numerical test is carried out which confirms our theoretical analysis.展开更多
In this paper, a new splitting positive definite nonconforming mixed finite element method is proposed for pseudo-hyperbolic equations, in which a quasi-Wilson quadrilateral element is used for the flux p, and the bil...In this paper, a new splitting positive definite nonconforming mixed finite element method is proposed for pseudo-hyperbolic equations, in which a quasi-Wilson quadrilateral element is used for the flux p, and the bilinear element is used for u. Superconvergence results in ||·||div,h norm for p and optimal error estimates in L2 norm for u are derived for both semi-discrete and fully discrete schemes under almost uniform meshes.展开更多
In this paper,a two-grid mixed finite element method(MFEM)of implicit Backward Euler(BE)formula is presented for the fourth order time-dependent singularly perturbed Bi-wave problem for d-wave superconductors by the n...In this paper,a two-grid mixed finite element method(MFEM)of implicit Backward Euler(BE)formula is presented for the fourth order time-dependent singularly perturbed Bi-wave problem for d-wave superconductors by the nonconforming EQ_(1)^(rot) element.In this approach,the original nonlinear system is solved on the coarse mesh through the Newton iteration method,and then the linear system is computed on the fine mesh with Taylor’s expansion.Based on the high accuracy results of the chosen element,the uniform superclose and superconvergent estimates in the broken H^(1)-norm are derived,which are independent of the negative powers of the perturbation parameter appeared in the considered problem.Numerical results illustrate that the computing cost of the proposed two-grid method is much less than that of the conventional Galerkin MFEM without loss of accuracy.展开更多
A modification of a finite element method of Douglas and Roberts for approximating the solution of the equations describing compressible miscible displacement in a porous medium is proposed and analyzed. The pressure ...A modification of a finite element method of Douglas and Roberts for approximating the solution of the equations describing compressible miscible displacement in a porous medium is proposed and analyzed. The pressure is treated by a parabolic mixed finite element method using a Raviart-Thomas space of index rover a quasiregular partition, An extension of the Darcy velocity along Gauss lines is used in the evaluation of the coefficients in the Galerkin procedure for the concentration. A simple computational procedure allows the superconvergence property of the fluid velocity to be retained in our total algorithm.展开更多
This paper treats the lowest-order Raviart-Thomas mixed finite element method for second order hyperbolic equation. The superconvergence phenomena between the finite element solution and its elliptic projection have b...This paper treats the lowest-order Raviart-Thomas mixed finite element method for second order hyperbolic equation. The superconvergence phenomena between the finite element solution and its elliptic projection have been observed. Thus a global L2-superconvergence of O(h2) is obtained by using one kind of post-processing operator.展开更多
In this paper,we consider the energy conserving numerical scheme for coupled nonlinear Klein-Gordon equations.We propose energy conserving finite element method and get the unconditional superconvergence resultO(h^(2)...In this paper,we consider the energy conserving numerical scheme for coupled nonlinear Klein-Gordon equations.We propose energy conserving finite element method and get the unconditional superconvergence resultO(h^(2)+Dt^(2))by using the error splitting technique and postprocessing interpolation.Numerical experiments are carried out to support our theoretical results.展开更多
In this paper,we study three families of C^(m)(m=0,1,2)finite element methods for one dimensional fourth-order equations.They include C^(0)and C1 Galerkin methods and a C^(2)-C^(0)Petrov-Galerkin method.Existence,uniq...In this paper,we study three families of C^(m)(m=0,1,2)finite element methods for one dimensional fourth-order equations.They include C^(0)and C1 Galerkin methods and a C^(2)-C^(0)Petrov-Galerkin method.Existence,uniqueness and optimal error estimates of the numerical solution are established.A unified approach is proposed to study the superconvergence property of these methods.We prove that,for kth-order elements,the C^(0)and C1 finite element solutions and their derivative are superconvergent with rate h2k−2(k≥3)at all mesh nodes;while the solution of the C^(2)-C^(0)Petrov-Galerkin method and its first-and second-order derivatives are superconvergent with rate h^(2k−4)(k≥5)at all mesh nodes.Furthermore,interior superconvergence points for the l-th(0≤l≤m+1)derivate approximations are also discovered,which are identified as roots of special Jacobi polynomials,Lobatto points,and Gauss points.As a by-product,we prove that the C^(m)finite element solution is superconvergent towards a particular Jacobi projection of the exact solution in the Hl(0≤l≤m+1)norms.All theoretical findings are confirmed by numerical experiments.展开更多
In this paper,we investigate the error estimates and superconvergence property of mixed finite element methods for elliptic optimal control problems.The state and co-state are approximated by the lowest order Raviart-...In this paper,we investigate the error estimates and superconvergence property of mixed finite element methods for elliptic optimal control problems.The state and co-state are approximated by the lowest order Raviart-Thomas mixed fi-nite element spaces and the control variable is approximated by piecewise constant functions.We derive L^(2) and L^(∞)-error estimates for the control variable.Moreover,using a recovery operator,we also derive some superconvergence results for the control variable.Finally,a numerical example is given to demonstrate the theoretical results.展开更多
We investigate the superconvergence properties of the constrained quadratic elliptic optimal control problem which is solved by using rectangular mixed finite element methods.We use the lowest order Raviart-Thomas mix...We investigate the superconvergence properties of the constrained quadratic elliptic optimal control problem which is solved by using rectangular mixed finite element methods.We use the lowest order Raviart-Thomas mixed finite element spaces to approximate the state and co-state variables and use piecewise constant functions to approximate the control variable.We obtain the superconvergence of O(h^(1+s))(0<s≤1)for the control variable.Finally,we present two numerical examples to confirm our superconvergence results.展开更多
This paper studies a low order mixed finite element method (FEM) for nonstationary incompressible Navier-Stokes equations. The velocity and pressure are approximated by the nonconforming constrained Q1^4ot element a...This paper studies a low order mixed finite element method (FEM) for nonstationary incompressible Navier-Stokes equations. The velocity and pressure are approximated by the nonconforming constrained Q1^4ot element and the piecewise constant, respectively. The superconvergent error estimates of the velocity in the broken H^1-norm and the pressure in the L^2-norm are obtained respectively when the exact solutions are reasonably smooth. A numerical experiment is carried out to confirm the theoretical results.展开更多
A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretizatio...A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.展开更多
We present a novel adaptive finite element method(AFEM)for elliptic equations which is based upon the Centroidal Voronoi Tessellation(CVT)and superconvergent gradient recovery.The constructions of CVT and its dual Cen...We present a novel adaptive finite element method(AFEM)for elliptic equations which is based upon the Centroidal Voronoi Tessellation(CVT)and superconvergent gradient recovery.The constructions of CVT and its dual Centroidal Voronoi Delaunay Triangulation(CVDT)are facilitated by a localized Lloyd iteration to produce almost equilateral two dimensional meshes.Working with finite element solutions on such high quality triangulations,superconvergent recovery methods become particularly effective so that asymptotically exact a posteriori error estimations can be obtained.Through a seamless integration of these techniques,a convergent adaptive procedure is developed.As demonstrated by the numerical examples,the new AFEM is capable of solving a variety of model problems and has great potential in practical applications.展开更多
For transient Naiver-Stokes problems, a stabilized nonconforming finite element method is presented, focusing on two pairs inf-sup unstable finite element spaces, i.e., pNC/pNC triangular and pNQ/pNQ quadrilateral fin...For transient Naiver-Stokes problems, a stabilized nonconforming finite element method is presented, focusing on two pairs inf-sup unstable finite element spaces, i.e., pNC/pNC triangular and pNQ/pNQ quadrilateral finite element spaces. The semi- and full-discrete schemes of the stabilized method are studied based on the pressure projection and a variational multi-scale method. It has some attractive features: avoiding higher-order derivatives and edge-based data structures, adding a discrete velocity term only on the fine scale, being effective for high Reynolds number fluid flows, and avoiding increased computation cost. For the full-discrete scheme, it has second-order estimations of time and is unconditionally stable. The presented numerical results agree well with the theoretical results.展开更多
The lowest order Pl-nonconforming triangular finite element method (FEM) for elliptic and parabolic interface problems is investigated. Under some reasonable regularity assumptions on the exact solutions, the optima...The lowest order Pl-nonconforming triangular finite element method (FEM) for elliptic and parabolic interface problems is investigated. Under some reasonable regularity assumptions on the exact solutions, the optimal order error estimates are obtained in the broken energy norm. Finally, some numerical results are provided to verify the theoretical analysis.展开更多
In this paper,we investigate the superconvergence property of the numerical solution to a quadratic elliptic control problem by using mixed finite element methods.The state and co-state are approximated by the order k...In this paper,we investigate the superconvergence property of the numerical solution to a quadratic elliptic control problem by using mixed finite element methods.The state and co-state are approximated by the order k=1 Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions.We prove the superconvergence error estimate of h3/2 in L2-norm between the approximated solution and the average L2 projection of the control.Moreover,by the postprocessing technique,a quadratic superconvergence result of the control is derived.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 10971203 and 11271340)the Research Fund for the Doctoral Program of Higher Education of China (No. 20094101110006)
文摘A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L^2 projection method, the superconvergence results for the velocity and pressure are obtained with a penalty parameter larger than that of the classical penalty scheme. The numerical experiments are carried out to confirm the theoretical results.
文摘Numerical experiments are given to verify the theoretical results for superconvergence of the elliptic problem by global and local L2-Projection methods.
文摘The superconvergence in the finite element method is a phenomenon in which the fi-nite element approximation converges to the exact solution at a rate higher than the optimal order error estimate. Wang proposed and analyzed superconvergence of the conforming finite element method by L2-projections. However, since the conforming finite element method (CFEM) requires a strong continuity, it is not easy to construct such finite elements for the complex partial differential equations. Thus, the nonconforming finite element method (NCFEM) is more appealing computationally due to better stability and flexibility properties compared to CFEM. The objective of this paper is to establish a general superconvergence result for the nonconforming finite element approximations for second-order elliptic problems by L2-projection methods by applying the idea presented in Wang. MATLAB codes are published at https://github.com/annaleeharris/Superconvergence-NCFEM for anyone to use and to study. The results of numerical experiments show great promise for the robustness, reliability, flexibility and accuracy of superconvergence in NCFEM by L2- projections.
基金Project supported by the National Natural Science Foundation of China(Nos.10371113,10471133 and 10590353)
文摘The convergence analysis of the lower order nonconforming element pro- posed by Park and Sheen is applied to the second-order elliptic problem under anisotropic meshes. The corresponding error estimation is obtained. Moreover, by using the interpo- lation postprocessing technique, a global superconvergence property for the discretization error of the postprocessed discrete solution to the solution itself is derived. Numerical results are also given to verify the theoretical analysis.
文摘The superconvergence in the finite element method is a phenomenon in which the finite element approximation converges to the exact solution at a rate higher than the optimal order error estimate. Wang proposed and analyzed superconvergence of the conforming finite element method by L2-projections. The goal of this paper is to perform numerical experiments using MATLAB to support and to verify the theoretical results in Wang for the superconvergence of the conforming finite element method (CFEM) for the second order elliptic problems by L2-projection methods. MATLAB codes are published at https://github.com/annaleeharris/Superconvergence-CFEM for anyone to use and to study.
基金Project supported by NSFC 10471133 and 10590353.
文摘The regular condition (there exists a constant c independent of the element K and the mesh such that hK/ρK ≤ c, where hK and ρK are diameters of K and the biggest ball contained in K, respectively) or the quasi-uniform condition is a basic assumption in the analysis of classical finite elements. In this paper, the supercloseness for consistency error and the superconvergence estimate at the central point of the element for the Wilson nonconforming element in solving second-order elliptic boundary value problem are given without the above assumption on the meshes. Furthermore the global superconvergence for the Wilson nonconforming element is obtained under the anisotropic meshes. Lastly, a numerical test is carried out which confirms our theoretical analysis.
基金Supported by the National Natural Science Foundation of China(No.10971203,11271340,11101384)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20094101110006)
文摘In this paper, a new splitting positive definite nonconforming mixed finite element method is proposed for pseudo-hyperbolic equations, in which a quasi-Wilson quadrilateral element is used for the flux p, and the bilinear element is used for u. Superconvergence results in ||·||div,h norm for p and optimal error estimates in L2 norm for u are derived for both semi-discrete and fully discrete schemes under almost uniform meshes.
基金supported by the National Natural Science Foundation of China(Grant Nos.12201640,12071443).
文摘In this paper,a two-grid mixed finite element method(MFEM)of implicit Backward Euler(BE)formula is presented for the fourth order time-dependent singularly perturbed Bi-wave problem for d-wave superconductors by the nonconforming EQ_(1)^(rot) element.In this approach,the original nonlinear system is solved on the coarse mesh through the Newton iteration method,and then the linear system is computed on the fine mesh with Taylor’s expansion.Based on the high accuracy results of the chosen element,the uniform superclose and superconvergent estimates in the broken H^(1)-norm are derived,which are independent of the negative powers of the perturbation parameter appeared in the considered problem.Numerical results illustrate that the computing cost of the proposed two-grid method is much less than that of the conventional Galerkin MFEM without loss of accuracy.
基金Supported by China State Major Rey Project for Basic Researches
文摘A modification of a finite element method of Douglas and Roberts for approximating the solution of the equations describing compressible miscible displacement in a porous medium is proposed and analyzed. The pressure is treated by a parabolic mixed finite element method using a Raviart-Thomas space of index rover a quasiregular partition, An extension of the Darcy velocity along Gauss lines is used in the evaluation of the coefficients in the Galerkin procedure for the concentration. A simple computational procedure allows the superconvergence property of the fluid velocity to be retained in our total algorithm.
文摘This paper treats the lowest-order Raviart-Thomas mixed finite element method for second order hyperbolic equation. The superconvergence phenomena between the finite element solution and its elliptic projection have been observed. Thus a global L2-superconvergence of O(h2) is obtained by using one kind of post-processing operator.
基金The work is supported by the National Natural Science Foundation of China(No.11871441)Beijing Natural Science Foundation(No.1192003).
文摘In this paper,we consider the energy conserving numerical scheme for coupled nonlinear Klein-Gordon equations.We propose energy conserving finite element method and get the unconditional superconvergence resultO(h^(2)+Dt^(2))by using the error splitting technique and postprocessing interpolation.Numerical experiments are carried out to support our theoretical results.
基金This work is supported in part by the National Natural Science Foundation of China under grants No.12271049,12101035,12131005,U1930402.
文摘In this paper,we study three families of C^(m)(m=0,1,2)finite element methods for one dimensional fourth-order equations.They include C^(0)and C1 Galerkin methods and a C^(2)-C^(0)Petrov-Galerkin method.Existence,uniqueness and optimal error estimates of the numerical solution are established.A unified approach is proposed to study the superconvergence property of these methods.We prove that,for kth-order elements,the C^(0)and C1 finite element solutions and their derivative are superconvergent with rate h2k−2(k≥3)at all mesh nodes;while the solution of the C^(2)-C^(0)Petrov-Galerkin method and its first-and second-order derivatives are superconvergent with rate h^(2k−4)(k≥5)at all mesh nodes.Furthermore,interior superconvergence points for the l-th(0≤l≤m+1)derivate approximations are also discovered,which are identified as roots of special Jacobi polynomials,Lobatto points,and Gauss points.As a by-product,we prove that the C^(m)finite element solution is superconvergent towards a particular Jacobi projection of the exact solution in the Hl(0≤l≤m+1)norms.All theoretical findings are confirmed by numerical experiments.
基金This work is supported by National Science Foundation of China,Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)Specialized Research Fund for the Doctoral Program of Higher Education(20114407110009).
文摘In this paper,we investigate the error estimates and superconvergence property of mixed finite element methods for elliptic optimal control problems.The state and co-state are approximated by the lowest order Raviart-Thomas mixed fi-nite element spaces and the control variable is approximated by piecewise constant functions.We derive L^(2) and L^(∞)-error estimates for the control variable.Moreover,using a recovery operator,we also derive some superconvergence results for the control variable.Finally,a numerical example is given to demonstrate the theoretical results.
基金supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China 10971074+1 种基金the National Basic Research Program under the Grant 2005CB321703Hunan Provincial Innovation Foundation For Postgraduate CX2009B119.
文摘We investigate the superconvergence properties of the constrained quadratic elliptic optimal control problem which is solved by using rectangular mixed finite element methods.We use the lowest order Raviart-Thomas mixed finite element spaces to approximate the state and co-state variables and use piecewise constant functions to approximate the control variable.We obtain the superconvergence of O(h^(1+s))(0<s≤1)for the control variable.Finally,we present two numerical examples to confirm our superconvergence results.
基金Project supported by the National Natural Science Foundation of China(No.11271340)
文摘This paper studies a low order mixed finite element method (FEM) for nonstationary incompressible Navier-Stokes equations. The velocity and pressure are approximated by the nonconforming constrained Q1^4ot element and the piecewise constant, respectively. The superconvergent error estimates of the velocity in the broken H^1-norm and the pressure in the L^2-norm are obtained respectively when the exact solutions are reasonably smooth. A numerical experiment is carried out to confirm the theoretical results.
基金supported by the National Natural Science Foundation of China(No.10771150)the National Basic Research Program of China(No.2005CB321701)+1 种基金the Program for New Century Excellent Talents in University(No.NCET-07-0584)the Natural Science Foundation of Sichuan Province(No.07ZB087)
文摘A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.
基金supported in part by the NSFC Key Project(11031006)Hunan Provincial NSF Project(10JJ7001)+2 种基金supported in part by Hunan Education Department Key Project 10A117supported in part by NTU star-up grant M58110011,MOE RG 59/08 M52110092 and NRF 2007IDM-IDM 002-010,Singaporesupported partially by NSF DMS-0712744 and NSF DMS-1016073.
文摘We present a novel adaptive finite element method(AFEM)for elliptic equations which is based upon the Centroidal Voronoi Tessellation(CVT)and superconvergent gradient recovery.The constructions of CVT and its dual Centroidal Voronoi Delaunay Triangulation(CVDT)are facilitated by a localized Lloyd iteration to produce almost equilateral two dimensional meshes.Working with finite element solutions on such high quality triangulations,superconvergent recovery methods become particularly effective so that asymptotically exact a posteriori error estimations can be obtained.Through a seamless integration of these techniques,a convergent adaptive procedure is developed.As demonstrated by the numerical examples,the new AFEM is capable of solving a variety of model problems and has great potential in practical applications.
基金supported by the National Natural Science Foundation of China(No.11271273)
文摘For transient Naiver-Stokes problems, a stabilized nonconforming finite element method is presented, focusing on two pairs inf-sup unstable finite element spaces, i.e., pNC/pNC triangular and pNQ/pNQ quadrilateral finite element spaces. The semi- and full-discrete schemes of the stabilized method are studied based on the pressure projection and a variational multi-scale method. It has some attractive features: avoiding higher-order derivatives and edge-based data structures, adding a discrete velocity term only on the fine scale, being effective for high Reynolds number fluid flows, and avoiding increased computation cost. For the full-discrete scheme, it has second-order estimations of time and is unconditionally stable. The presented numerical results agree well with the theoretical results.
基金Project supported by the National Natural Science Foundation of China(No.11271340)
文摘The lowest order Pl-nonconforming triangular finite element method (FEM) for elliptic and parabolic interface problems is investigated. Under some reasonable regularity assumptions on the exact solutions, the optimal order error estimates are obtained in the broken energy norm. Finally, some numerical results are provided to verify the theoretical analysis.
基金supported by National Natural Science Foundation of China(Grant No.10971074)Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20114407110009)
文摘In this paper,we investigate the superconvergence property of the numerical solution to a quadratic elliptic control problem by using mixed finite element methods.The state and co-state are approximated by the order k=1 Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions.We prove the superconvergence error estimate of h3/2 in L2-norm between the approximated solution and the average L2 projection of the control.Moreover,by the postprocessing technique,a quadratic superconvergence result of the control is derived.