Hollow CuO-CeO2-ZrO2nano-particles were prepared with supercritical anti-solvent apparatus by using methanol as sol-vent and supercritical carbon dioxide as anti-solvent. Two key factors (i.e., pressure and temperat...Hollow CuO-CeO2-ZrO2nano-particles were prepared with supercritical anti-solvent apparatus by using methanol as sol-vent and supercritical carbon dioxide as anti-solvent. Two key factors (i.e., pressure and temperature) were investigated to explore the effects of catalyst structure and physic-chemical properties (i.e., morphology, reducing property, oxygen storage capacity and specific surface area). The resulting materials were characterized with X-ray diffraction (XRD), high resolution transmission electron micros-copy (HRTEM), Brunauer-Emmett-Teller (BET),hydrogen temperature programmed reduction (H2-TPR) and oxygen storage capac-ity (OSC) measurement, respectively. The experimental results showed that lower temperatures promoted production of hollow struc-ture nano-particulates. The particle morphology also changed significantly, i.e. the solid construction was first transferred to hollow structure then back to solid construction. The optimal conditions for obtaining hollow nano-particles were determined at 45 °C, 18.0–24.0 MPa.展开更多
The nano-crystalline Cu-Ce-Zr-O composite oxides were successfully prepared by the supercritical anti-solvent (SAS) process. The physicochemical properties and catalytic performances were investigated by X-ray diffr...The nano-crystalline Cu-Ce-Zr-O composite oxides were successfully prepared by the supercritical anti-solvent (SAS) process. The physicochemical properties and catalytic performances were investigated by X-ray diffraction (XRD), Raman spectroscopy, H2 temperature-programmed reduction (H2 -TPR), oxygen storage capacity (OSC) measurement and catalytic activity evaluation. It was found that Cu2+ ions incorporated into CeO2 -ZrO2 lattice to form Cu-Ce-Zr-O solid solution associated with the formation of oxygen vacancies. The Cu-Ce-Zr-O catalysts prepared via the SAS process with the Cu content 2.63 mol.% showed the highest OSC index of 636.9 μmol/g. Compared with the samples prepared by impregnation method, Cu doping using SAS process could improve the dispersion of Cu2+ in the composite oxide, enhance the interaction between Cu2+ and CeO2-ZrO2 , improve the reducibility of catalyst, and thus improve the OSC performance and increase the catalytic activity for CO oxidation at low temperature.展开更多
CeO2-ZrO2-Al2O3 ternary oxides were successfully prepared by a green route of supercritical anti-solvent precipitation with supercritical CO2 as anti-solvent and methanol as solvent. The structures and oxygen storage ...CeO2-ZrO2-Al2O3 ternary oxides were successfully prepared by a green route of supercritical anti-solvent precipitation with supercritical CO2 as anti-solvent and methanol as solvent. The structures and oxygen storage capacities of these ternary oxides were characterized by XRD, Raman spectra and oxygen storage capacity measurements. It was found that Al3+ and Zr4+ inserted into CeO2 lattice, forming CeO2-ZrO2-Al2O3 solid solution. The concentration of aluminium isopropoxide in the solution affected the concentration of oxygen vacancy and the distortion of oxygen sublattice which were responsible for the oxygen storage capacity. The rapidest oxygen uptake/release rate and maximum total oxygen storage capacity (122.0 mmolO2/molCeO2) were obtained with the aluminitun isopropoxide concentration at 0.2 wt.% in the solution.展开更多
Monolithic TiO 2 aerogels have been prepared from titanium n butoxide by sol gel process and supercritical drying technique, and the structural properties of the aerogel samples have been characterized by means of SEM...Monolithic TiO 2 aerogels have been prepared from titanium n butoxide by sol gel process and supercritical drying technique, and the structural properties of the aerogel samples have been characterized by means of SEM, TEM, XRD, IR, BET and pore distribution analysis. The results indicated that the optimum condition for preparing monolithic TiO 2 aerogels was n [Ti(OC 4H 9) 4]∶ n (C 2H 5OH)∶ n (H 2O)∶ n (HNO 3) =1∶18.3∶3.75∶0.14. The final aerogels which consist of colloidal particles with diameters of about 5 nm were found to be with coherent uniform size and low density solid inorganic materials with porosity of about 90%, and contained mesopore in the range of 10-20 nm. The monolithic TiO 2 aerogels were of the pure amorphous form at room temperature, which would be converted into anatase and then into rutile by increasing the temperature of heat treatment.展开更多
基金supported by the National Natural Science Foundation of China(20976120)Natural Science Foundation of Tianjin(09JCYBJC06200)
文摘Hollow CuO-CeO2-ZrO2nano-particles were prepared with supercritical anti-solvent apparatus by using methanol as sol-vent and supercritical carbon dioxide as anti-solvent. Two key factors (i.e., pressure and temperature) were investigated to explore the effects of catalyst structure and physic-chemical properties (i.e., morphology, reducing property, oxygen storage capacity and specific surface area). The resulting materials were characterized with X-ray diffraction (XRD), high resolution transmission electron micros-copy (HRTEM), Brunauer-Emmett-Teller (BET),hydrogen temperature programmed reduction (H2-TPR) and oxygen storage capac-ity (OSC) measurement, respectively. The experimental results showed that lower temperatures promoted production of hollow struc-ture nano-particulates. The particle morphology also changed significantly, i.e. the solid construction was first transferred to hollow structure then back to solid construction. The optimal conditions for obtaining hollow nano-particles were determined at 45 °C, 18.0–24.0 MPa.
基金Project supported by National Natural Science Foundation of China(20976120)Natural Science Foundation of Tianjin(09JCYBJC06200)
文摘The nano-crystalline Cu-Ce-Zr-O composite oxides were successfully prepared by the supercritical anti-solvent (SAS) process. The physicochemical properties and catalytic performances were investigated by X-ray diffraction (XRD), Raman spectroscopy, H2 temperature-programmed reduction (H2 -TPR), oxygen storage capacity (OSC) measurement and catalytic activity evaluation. It was found that Cu2+ ions incorporated into CeO2 -ZrO2 lattice to form Cu-Ce-Zr-O solid solution associated with the formation of oxygen vacancies. The Cu-Ce-Zr-O catalysts prepared via the SAS process with the Cu content 2.63 mol.% showed the highest OSC index of 636.9 μmol/g. Compared with the samples prepared by impregnation method, Cu doping using SAS process could improve the dispersion of Cu2+ in the composite oxide, enhance the interaction between Cu2+ and CeO2-ZrO2 , improve the reducibility of catalyst, and thus improve the OSC performance and increase the catalytic activity for CO oxidation at low temperature.
基金National Natural Science Foundation of China(20976120)the Natural Science Foundation of Tianjin(09JCYBJC06200)
文摘CeO2-ZrO2-Al2O3 ternary oxides were successfully prepared by a green route of supercritical anti-solvent precipitation with supercritical CO2 as anti-solvent and methanol as solvent. The structures and oxygen storage capacities of these ternary oxides were characterized by XRD, Raman spectra and oxygen storage capacity measurements. It was found that Al3+ and Zr4+ inserted into CeO2 lattice, forming CeO2-ZrO2-Al2O3 solid solution. The concentration of aluminium isopropoxide in the solution affected the concentration of oxygen vacancy and the distortion of oxygen sublattice which were responsible for the oxygen storage capacity. The rapidest oxygen uptake/release rate and maximum total oxygen storage capacity (122.0 mmolO2/molCeO2) were obtained with the aluminitun isopropoxide concentration at 0.2 wt.% in the solution.
文摘Monolithic TiO 2 aerogels have been prepared from titanium n butoxide by sol gel process and supercritical drying technique, and the structural properties of the aerogel samples have been characterized by means of SEM, TEM, XRD, IR, BET and pore distribution analysis. The results indicated that the optimum condition for preparing monolithic TiO 2 aerogels was n [Ti(OC 4H 9) 4]∶ n (C 2H 5OH)∶ n (H 2O)∶ n (HNO 3) =1∶18.3∶3.75∶0.14. The final aerogels which consist of colloidal particles with diameters of about 5 nm were found to be with coherent uniform size and low density solid inorganic materials with porosity of about 90%, and contained mesopore in the range of 10-20 nm. The monolithic TiO 2 aerogels were of the pure amorphous form at room temperature, which would be converted into anatase and then into rutile by increasing the temperature of heat treatment.