The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon diox...The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon dioxide(CO_(2))in the pyrolysis environment of shale reservoirs is the supercritical state.Its unique supercritical fluid properties not only effectively heat organic matter,displace pyrolysis products and change shale pore structure,but also achieve carbon storage to a certain extent.Shale samples were made into powder and three sizes of cores,and nitrogen(N_(2))and supercritical carbon dioxide(ScCO_(2))pyrolysis experiments were performed at different final pyrolysis temperatures.The properties and mineral characteristics of the pyrolysis products were studied based on gas chromatography analysis,Xray diffraction tests,and mass spectrometry analysis.Besides,the pore structure characteristics at different regions of cores before and after pyrolysis were analyzed using N_(2) adsorption tests to clarify the impact of fracturing degree on the pyrolysis effect.The results indicate that the optimal pyrolysis temperature of Longkou shale is about 430℃.Compared with N_(2),the oil yield of ScCO_(2) pyrolysis is higher.The pyrolysis oil obtained by ScCO_(2) extraction has more intermediate fractions and higher relative molecular weight.The ScCO_(2) can effectively improve the pore diameter of shale and its effect is better than that of N_(2).The micropores are produced in shale after pyrolysis,and the macropores only are generated in ScCO_(2) pyrolysis environments with temperatures greater than 430℃.The pore structure has different development characteristics at different pyrolysis temperatures,which are mainly affected by the pressure holding of volatile matter and products blocking.Compared to the surface of the core,the pore development effect inside the core is better.With the decrease in core size,the pore diameter,specific surface area,and pore volume of cores all increase after pyrolysis.展开更多
As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates hav...As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range.展开更多
In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential inve...In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential investigations into the use of supercritical carbon dioxide (sCO2) power cycles. Climate change mitigation is the ultimate driver for this increased interest;other relevant issues include the potential for high cycle efficiency and a circular economy. In this study, a 25 MWe recompression closed Brayton cycle (RCBC) has been assessed, and sCO2 has been proposed as the working fluid for the power plant. The methodology used in this research work comprises thermodynamic and techno-economic analysis for the prospective commercialization of this sCO2 power cycle. An evaluated estimation of capital expenditure, operational expenditure, and cost of electricity has been considered in this study. The ASPEN Plus simulation results have been compared with theoretical and mathematical calculations to assess the performance of the compressors, turbine, and heat exchangers. The results thus reveal that the cycle efficiency for this prospective sCO2 recompression closed Brayton cycle increases (39% - 53.6%) as the temperature progressively increases from 550˚C to 900˚C. Data from the Aspen simulation model was used to aid the cost function calculations to estimate the total capital investment cost of the plant. Also, the techno-economic results have shown less cost for purchasing equipment due to fewer components being required for the cycle configuration as compared to the conventional steam power plant.展开更多
[Objective] Ginger essential oil (GEO) is widely used in food production and medical field in recent years due to its prominent biological functions, and this study was conducted to obtain high-quality and high-puri...[Objective] Ginger essential oil (GEO) is widely used in food production and medical field in recent years due to its prominent biological functions, and this study was conducted to obtain high-quality and high-purity ginger essential oil from the fresh ginger. [Method] GEO was extracted from ginger roots by supercritical fluid extraction (SFE) method. The effects of flow rate of CO2, mesh size of ginger powder and volume of entrainer were investigated by single-factor experiments and response surface method. The content and extraction rate of 6-gingerol represented the extraction index of GEO. [Result] The conditions were optimized as follows: flow rate of CO2 at 25 L/h, mesh size of ginger power of 80 mesh, and volume of anhydrous ethanol as entrainer of 92.46 ml. The optimal extraction rate of 6-gingerol was 3.21%, which was predicted by RSM. [Conclusion] The optimal process of supercritical carbon dioxide extraction of ginger essential oil was identified by singlefactor experiments and response surface method. The present study provides a satisfactory method for purifying GEO from ginger for industrial purpose.展开更多
[Objective] This study was aimed to determine the optimal parameters for the extraction of perilla seed oil to obtain high-quality perilla seed oil and analyze its compositions. [Method] In this study, perilla seed oi...[Objective] This study was aimed to determine the optimal parameters for the extraction of perilla seed oil to obtain high-quality perilla seed oil and analyze its compositions. [Method] In this study, perilla seed oil was extracted using supercritical CO2 (SC-CO2). The effects of extraction time, temperature and pressure were investigated by single-factor experiments and orthogonal array testing (ORT). The chemical compositions of extracted perilla seed oil were investigated by GC-MS. [Result] The optimal conditions for the extraction of perilla seed oil using SC-CO2 were extraction time of 4 h, extraction temperature at 40 ℃, and extraction pressure at 23 MPa. Under these conditions, the extraction yield of perilla seed oil was maximized to 12.43%. GC-MS analysis revealed that perilla seed oil was a complex mixture containing 76.183% α-linolenic acid. [Conclusion] Supercritical CO2 extraction was proven to be an effective technology to extract oil from perilla seed, and GCMS was also a satisfactory method for analyzing the compositions of perilla seed oil.展开更多
Microparticle formation and crystallization rate of 1,3,5,7-tetranitro-l,3,5,7-tetraazacyclooctane (HMX) in acetone solution using supercritical carbon dioxide antisolvent (GAS) recrystallization were studied. Scannin...Microparticle formation and crystallization rate of 1,3,5,7-tetranitro-l,3,5,7-tetraazacyclooctane (HMX) in acetone solution using supercritical carbon dioxide antisolvent (GAS) recrystallization were studied. Scanning electronic microscopy, X-ray diffraction and infrared radiation were used to examine particle size, crystallinity and chemical structure. The results show that B-HMX microparticle in different average size (2-9.5um) and with narrow size distribution were obtained by controlling the expansibility, expansion speed, initial concentration and temperature during recrystallization of HMX. The formation of nuclei may be a main cause of consumption of solute when the solution is expanded rapidly enough and the equilibrium concentration is lower, in which almost monodisperse microparticle can be obtained.展开更多
Supercritical carbon dioxide (scCO2) microemulsion was formed by supercritical CO2, H20, sodium bis(2-ethylhexyl) sulfosuccinate (AOT, surfactant) and C2HsOH (co-surfactant) under pressures higher than 8 MPa a...Supercritical carbon dioxide (scCO2) microemulsion was formed by supercritical CO2, H20, sodium bis(2-ethylhexyl) sulfosuccinate (AOT, surfactant) and C2HsOH (co-surfactant) under pressures higher than 8 MPa at 45 ℃. The fundamental characteristics of the scCO2 microemulsion and the minimum miscibility pressure (MMP) with Daqing oil were investigated with a high-pressure falling sphere viscometer, a high-pressure interfacial tension meter, a PVT cell and a slim tube test. The mechanism of the scCO2 microemulsion for enhancing oil recovery is discussed. The results showed that the viscosity and density of the scCO2 microemulsion were higher than those of the scCO2 fluid at the same pressure and temperature. The results of interfacial tension and slim tube tests indicated that the MMP of the scCO2 microemulsion and crude oil was lower than that of the scCO2 and crude oil at 45 ℃. It is the combined action of viscosity, density and MMP which made the oil recovery efficiency of the scCO2 microemulsion higher than that of the scCO2 fluid.展开更多
Compared with the conventionally gaseous or liquid working media,the specific internal energy of supercritical carbon dioxide(SCD)is higher at the same temperature and pressure,and the critical temperature of carbon d...Compared with the conventionally gaseous or liquid working media,the specific internal energy of supercritical carbon dioxide(SCD)is higher at the same temperature and pressure,and the critical temperature of carbon dioxide is close to room temperature,making SCD a potential new working medium for pneumatic launch.To analyze the feasibility of this conception,an analytical model of a pneumatic catapult is established on basis of the conservations of mass and energy.The model consists of a high-pressure chamber and a low-pressure chamber connected by multiple valves,and there is a movable piston in the low-pressure chamber that can push an aircraft to accelerate.The effects of the launch readiness state of SCD in the high-pressure chamber,the initial volume of the low-pressure chamber and the valve control on the movement of the aircraft are analyzed.It is found that there is a restrictive relation between the temperature and pressure of the launch readiness state of SCD,i.e.,there is a maximum allowable launch readiness pressure when the launch readiness temperature is fixed.If this restrictive relation is not satisfied,the working medium in the low-pressure chamber will drop to its triple point within a few milliseconds,leading to a launch failure.Owing to this restrictive relation,there is an optimal launch readiness state of SCD with the highest working capacity for any allowable launch readiness temperature.The pressure of the low-pressure chamber will decrease significantly as the initial volume increases,leading to a decreased acceleration of the aircraft.The acceleration can be controlled below a critical value by a designed sequential blasting technique of multiple valves.The calculated results show that a 500 kg aircraft can be accelerated from 0 to 58 m/s in 0.9 s with 36 kg of carbon dioxide.This research provides a new technique for the controllable cold launch of an aircraft.展开更多
Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyze...Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyzed the fracture surface characteristics induced by supercritical carbon dioxide(SC-CO_(2))and water in open-hole and perforation completion conditions under triaxial stresses.A simple calculation method was proposed to quantitatively analyze the fracture surface area and roughness in macro-level based on three-dimensional(3D)scanning data.In micro-level,scanning electron micrograph(SEM)was used to analyze the features of fracture surface.The results showed that the surface area of the induced fracture increases with perforation angle for both SC-CO_(2)and water fracturing,and the surface area of SC-CO_(2)-induced fracture is 6.49%e58.57%larger than that of water-induced fracture.The fractal dimension and surface roughness of water-induced fractures increase with the increase in perforation angle,while those of SC-CO_(2)-induced fractures decrease with the increasing perforation angle.A considerable number of microcracks and particle peeling pits can be observed on SC-CO_(2)-induced fracture surface while there are more flat particle surfaces in water-induced fracture surface through SEM images,indicating that fractures tend to propagate along the boundary of the particle for SC-CO_(2)fracturing while water-induced fractures prefer to cut through particles.These findings are of great significance for analyzing fracture mechanism and evaluating fracturing stimulation performance.展开更多
Vapor-liquid phase equilibrium data including composition,densities,molar volume and equilibrium constant of isobutanol in supercritical carbon dioxide from 313.2K to 353.2K were measured in a variable-volume visual c...Vapor-liquid phase equilibrium data including composition,densities,molar volume and equilibrium constant of isobutanol in supercritical carbon dioxide from 313.2K to 353.2K were measured in a variable-volume visual cell.The properties of critical point were obtained by extrapolation.The results showed that critical temperature,critical pressure and critical compressibility factor of CO2-isobutanol system decreased with the increase of critical CO2 content.The phase equilibrium model was established by Peng-Robinson equation of state and van der Waals-2 mixing regulation,and model parameters were determined by optimization calculation of nonlinear least square method.The correlation between calculated values and the experimental data showed good agreement.展开更多
For a radial inflow turbine(RIT),leakage flow in impeller backface cavity has critical impacts on aerodynamic performance of the RIT and axial force acting on the RIT impeller.In order to control this leakage flow,dif...For a radial inflow turbine(RIT),leakage flow in impeller backface cavity has critical impacts on aerodynamic performance of the RIT and axial force acting on the RIT impeller.In order to control this leakage flow,different types of labyrinth seals are numerically studied in this paper based on a supercritical carbon dioxide(S-CO_(2))RIT.The effects of seal clearance and cavity outlet pressure are first analyzed,and the impacts of seal design parameters,including height,number and shape of seal teeth,are evaluated.Results indicate that adding labyrinth seal can improve cavity pressure and hence adequately inhibits leakage flow.Decreasing the seal clearance and increasing the height of seal teeth are beneficial to improve sealing performance,and the same effect can be obtained by increasing the number of seal teeth.Meanwhile,employing seals can reduce leakage loss and improve RIT efficiency under a specific range of cavity outlet pressure.Finally,the influences of seal types on the flow field in seal cavity are numerically analyzed,and results demonstrate that isosceles trapezoidal type of seal cavity has better sealing performance than triangular,rectangular and right-angled trapezoidal seal cavities.展开更多
The process based on supercritical fluid extraction for reprocessing of the spent nuclear fuel has some remarkable advantages over the plutonium-uranium extraction(PUREX) process.Especially,it can minimize the generat...The process based on supercritical fluid extraction for reprocessing of the spent nuclear fuel has some remarkable advantages over the plutonium-uranium extraction(PUREX) process.Especially,it can minimize the generation of secondary waste.Dynamic reactive extraction of neodymium oxide(Nd2O3) in supercritical carbon dioxide(SC-CO2) containing tri-n-butyl phosphate-nitric acid(TBP-HNO3) complex was investigated.Temperature showed a positive effect on the extraction efficiency,while pressure showed a negative effect when the unsaturated TBP-HNO3 complex was employed for the dynamic reactive extraction of Nd2O3 in SC-CO2.Both temperature and pressure effects indicated that the kinetic process of the reactive extraction was controlled by the chemical reaction.A kinetic model was proposed to describe the extraction process.展开更多
Andrographis paniculata Nees has been extensively used for traditional medicine and help against fever dysentery, diarrhoea, inflammation, and sore throat. In this study, andrographolide, the main component of this pl...Andrographis paniculata Nees has been extensively used for traditional medicine and help against fever dysentery, diarrhoea, inflammation, and sore throat. In this study, andrographolide, the main component of this plant was extracted from the leaves of A. paniculata using supercritical carbon dioxide. The operating pressures were varied from 7.50 to 20MPa, the temperatures were varied from 30℃ to 60℃, and the flow rates were varied from 0.5 to 4ml.min^-1. The best extraction condition occurred at 10MPa, 40℃, and a flow rate of 2ml.min^-1 for a 3g sample of A. paniculata ground-dried leaves. The measured extraction rate was found to be about 0.0174g of andrographolide per gram of andrographolide present in the leaves per hour of operation. The future studies must focus on the interaction between the various operating parameters such as temperature, pressure, and flow rate of supercritical carbon dioxide.展开更多
To avoid the defects caused by the hydrogen evolution and improve the corrosion and wear properties of the electroplated films in the traditional aqueous bath electrodeposition,a supercritical carbon dioxide(Sc-CO2)em...To avoid the defects caused by the hydrogen evolution and improve the corrosion and wear properties of the electroplated films in the traditional aqueous bath electrodeposition,a supercritical carbon dioxide(Sc-CO2)emulsion was proposed to electrodeposite ternary nanocrystalline Co-Ni-P alloy films.Microstructure,corrosive and tribological properties of the Co-Ni-P films were investigated and compared with the ones electroplated by conventional method.The results show that the Co-Ni-P films produced with Sc-CO2assisted electrodeposition exhibit a more compact microstructure.The preferred orientation plane of hcp(110)for the Co-Ni-P films produced in conventional aqueous bath is changed to be hcp(100)for the one prepared in emulsified Sc-CO2bath.The microhardness,corrosion resistance and tribological properties of the Co-Ni-P films are substantially improved with the assistance of Sc-CO2in the electrodeposition bath.展开更多
A series of glucose derivatives have been used as chelating reagents to extract metal ions in supercritical carbon dioxide. With perfluoro-l-octanesulfonic acid tetraethylammonium salt as additive, glucose derivatives...A series of glucose derivatives have been used as chelating reagents to extract metal ions in supercritical carbon dioxide. With perfluoro-l-octanesulfonic acid tetraethylammonium salt as additive, glucose derivatives were selective for Sr^2+ and Pb^2+ extraction in supercritical carbon dioxide.展开更多
Corrosion behaviors of P110 and N80 tubular steels in CO_(2) gas phase and supercritical(S-CO_(2))phase in a saturated water vapor environment were explored in corrosion weight loss experiments by SEM,EDS,XRD,XPS and ...Corrosion behaviors of P110 and N80 tubular steels in CO_(2) gas phase and supercritical(S-CO_(2))phase in a saturated water vapor environment were explored in corrosion weight loss experiments by SEM,EDS,XRD,XPS and cross-section analysis techniques.With the increase in CO_(2) partial pressure,the average corrosion rate increased first and then decreased.The average corrosion rate reached the maximum value under the near-critical pressure.When CO_(2) partial pressure further increased to be above the critical pressure,the average corrosion rate gradually decreased and local aggregation of molecules was weakened.展开更多
Supercritical carbon dioxide (SC-CO2) extraction was employed to extract oil from Nigella glandulifera Freyn seed in this study. Response surface methodology (RSM) was applied to evaluate the effects of the proces...Supercritical carbon dioxide (SC-CO2) extraction was employed to extract oil from Nigella glandulifera Freyn seed in this study. Response surface methodology (RSM) was applied to evaluate the effects of the process parameters (pressure, temperature, and CO2 flow rate) on oil yield of N. glandulifera seed. A Box-Behnken design was used to optimize the extraction parameters. The analysis of variance indicated that the linear coefficients of pressure and CO2 flow rate, the quadratic term coefficients of pressure and temperature and the interactions between pressure and temperature, as well as temperature and CO2 flow rate, had significant effects on the oil yield (P〈0.05). The optimal conditions to obtain the maximum oil yield from N. glandulifera seed were pressure 30.84 MPa, temperature 40.57°C, and CO2 flow rate 22.00 L h-1. Under these optimal conditions, the yield of oil was predicted to be 38.19%. The validation experiment results agreed with the predicted values. The fatty acid composition of N. glandulifera seed oil extracted using SC-CO2 was compared with that of oil obtained by Soxhlet method. The results showed that the fatty acid compositions of oil extracted by the two methods were similar. Identification of oil compounds with gas chromatography-mass spectrometry (GC-MS) showed that the contents of unsaturated fatty acids linoleic acid (48.30%), oleic acid (22.28%) and saturated fatty acids palmitic acid (16.65%), stearic acid (4.17%) were the most abundant fatty acids in seed oil from N. glandulifera.展开更多
To investigate fracture generation and strain variation during SC-CO_(2)(supercritical carbon dioxide)jet fracturing,the model of induced strain is established and the experiments are comprehensively studied.The influ...To investigate fracture generation and strain variation during SC-CO_(2)(supercritical carbon dioxide)jet fracturing,the model of induced strain is established and the experiments are comprehensively studied.The influence factors are comprehensively explored,such as jet pressure,ambient pressure,etc.With the increasing jet pressure,the fracture morphology changes from parallel cracks to oblique cracks.Both the mass loss of specimen and CO_(2) absorption increase significantly,and the growth rate and minimum value of strain also rise exponentially.Under a high ambient pressure of 8.0 MPa,the main fractures mostly propagated from the surface to the bottom surface of the specimen.The maximum strain and the stable duration under higher ambient pressure are 1.5 times and 10 times,respectively,of the case under the ambient pressure of 5.0 MPa.The comparison shows that the optimal jet distance is 5-7 times the nozzle diameter,resulting in massive mass loss,large CO_(2)absorption,and peak strain.Moreover,the nonlinear variation of strain curve during jet pressurization is related to the type of rock and ambient pressure.These studies clearly show the relationship between the fracture morphology and induced strain,which are crucial for SC-CO_(2)fracturing in shale gas reservoirs.展开更多
The structural and dynamical properties of hexafluoroacetylacetone(HFA) and acetylacetone(AA) at the water/supercritical CO2(Sc-CO2) interface at 20 MPa and 318.15 K are investigated by molecular dynamics simulations....The structural and dynamical properties of hexafluoroacetylacetone(HFA) and acetylacetone(AA) at the water/supercritical CO2(Sc-CO2) interface at 20 MPa and 318.15 K are investigated by molecular dynamics simulations.The TIP3P potential is used for water and the EPM2 model is for CO2.The water phase and SC-CO2 phase form a distinct immiscible liquid-liquid interface.The two chelating molecules show interfacial preference.Comparatively,the AA molecules show somewhat more preference for interfacial region,whereas the HFA molecules are preferably near the Sc-CO2 phase.The orientational distribution of the β-diketone molecules and the radial distribution functions between β-diketones and solvents are obtained in order to study the microscopic structural properties of the β-diketones at the water-SC-CO2 interface.It is found that the translational diffusion and rotational diffusion of HFA and AA are obviously anisotropic and decrease as the β-diketone molecules approach the interface.The anisotropic dynamic behavior for the solute molecules is related to the corresponding structural properties.展开更多
In the present work,a novel machine learning computational investigation is carried out to accurately predict the solubility of different acids in supercritical carbon dioxide.Four different machine learning algorithm...In the present work,a novel machine learning computational investigation is carried out to accurately predict the solubility of different acids in supercritical carbon dioxide.Four different machine learning algorithms of radial basis function,multi-layer perceptron(MLP),artificial neural networks(ANN),least squares support vector machine(LSSVM)and adaptive neuro-fuzzy inference system(ANFIS)are used to model the solubility of different acids in carbon dioxide based on the temperature,pressure,hydrogen number,carbon number,molecular weight,and the dissociation constant of acid.To evaluate the proposed models,different graphical and statistical analyses,along with novel sensitivity analysis,are carried out.The present study proposes an efficient tool for acid solubility estimation in supercritical carbon dioxide,which can be highly beneficial for engineers and chemists to predict operational conditions in industries.展开更多
基金supported by the National Natural Science Foundation of China (Nos.U22B6004,51974341)State Key Laboratory of Deep Oil and Gas (No.SKLDOG2024-ZYTS-14)the Fundamental Research Funds for the Central Universities (No.20CX06070A)。
文摘The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon dioxide(CO_(2))in the pyrolysis environment of shale reservoirs is the supercritical state.Its unique supercritical fluid properties not only effectively heat organic matter,displace pyrolysis products and change shale pore structure,but also achieve carbon storage to a certain extent.Shale samples were made into powder and three sizes of cores,and nitrogen(N_(2))and supercritical carbon dioxide(ScCO_(2))pyrolysis experiments were performed at different final pyrolysis temperatures.The properties and mineral characteristics of the pyrolysis products were studied based on gas chromatography analysis,Xray diffraction tests,and mass spectrometry analysis.Besides,the pore structure characteristics at different regions of cores before and after pyrolysis were analyzed using N_(2) adsorption tests to clarify the impact of fracturing degree on the pyrolysis effect.The results indicate that the optimal pyrolysis temperature of Longkou shale is about 430℃.Compared with N_(2),the oil yield of ScCO_(2) pyrolysis is higher.The pyrolysis oil obtained by ScCO_(2) extraction has more intermediate fractions and higher relative molecular weight.The ScCO_(2) can effectively improve the pore diameter of shale and its effect is better than that of N_(2).The micropores are produced in shale after pyrolysis,and the macropores only are generated in ScCO_(2) pyrolysis environments with temperatures greater than 430℃.The pore structure has different development characteristics at different pyrolysis temperatures,which are mainly affected by the pressure holding of volatile matter and products blocking.Compared to the surface of the core,the pore development effect inside the core is better.With the decrease in core size,the pore diameter,specific surface area,and pore volume of cores all increase after pyrolysis.
基金financial support from the National Key Research and Development Program of China(2020YFA0710202)the National Natural Science Foundation of China(21978043,U1662130)+1 种基金Inner Mongolia University of Technology Scientific Research Initial Funding(DC2300001240)Talent Introduction Support Project of Inner Mongolia(DC2300001426).
文摘As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range.
文摘In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential investigations into the use of supercritical carbon dioxide (sCO2) power cycles. Climate change mitigation is the ultimate driver for this increased interest;other relevant issues include the potential for high cycle efficiency and a circular economy. In this study, a 25 MWe recompression closed Brayton cycle (RCBC) has been assessed, and sCO2 has been proposed as the working fluid for the power plant. The methodology used in this research work comprises thermodynamic and techno-economic analysis for the prospective commercialization of this sCO2 power cycle. An evaluated estimation of capital expenditure, operational expenditure, and cost of electricity has been considered in this study. The ASPEN Plus simulation results have been compared with theoretical and mathematical calculations to assess the performance of the compressors, turbine, and heat exchangers. The results thus reveal that the cycle efficiency for this prospective sCO2 recompression closed Brayton cycle increases (39% - 53.6%) as the temperature progressively increases from 550˚C to 900˚C. Data from the Aspen simulation model was used to aid the cost function calculations to estimate the total capital investment cost of the plant. Also, the techno-economic results have shown less cost for purchasing equipment due to fewer components being required for the cycle configuration as compared to the conventional steam power plant.
基金Supported by the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(16KJA550001)~~
文摘[Objective] Ginger essential oil (GEO) is widely used in food production and medical field in recent years due to its prominent biological functions, and this study was conducted to obtain high-quality and high-purity ginger essential oil from the fresh ginger. [Method] GEO was extracted from ginger roots by supercritical fluid extraction (SFE) method. The effects of flow rate of CO2, mesh size of ginger powder and volume of entrainer were investigated by single-factor experiments and response surface method. The content and extraction rate of 6-gingerol represented the extraction index of GEO. [Result] The conditions were optimized as follows: flow rate of CO2 at 25 L/h, mesh size of ginger power of 80 mesh, and volume of anhydrous ethanol as entrainer of 92.46 ml. The optimal extraction rate of 6-gingerol was 3.21%, which was predicted by RSM. [Conclusion] The optimal process of supercritical carbon dioxide extraction of ginger essential oil was identified by singlefactor experiments and response surface method. The present study provides a satisfactory method for purifying GEO from ginger for industrial purpose.
基金Supported by Undergraduate Innovation Training Program of Jiangsu Province(201610327010Z)~~
文摘[Objective] This study was aimed to determine the optimal parameters for the extraction of perilla seed oil to obtain high-quality perilla seed oil and analyze its compositions. [Method] In this study, perilla seed oil was extracted using supercritical CO2 (SC-CO2). The effects of extraction time, temperature and pressure were investigated by single-factor experiments and orthogonal array testing (ORT). The chemical compositions of extracted perilla seed oil were investigated by GC-MS. [Result] The optimal conditions for the extraction of perilla seed oil using SC-CO2 were extraction time of 4 h, extraction temperature at 40 ℃, and extraction pressure at 23 MPa. Under these conditions, the extraction yield of perilla seed oil was maximized to 12.43%. GC-MS analysis revealed that perilla seed oil was a complex mixture containing 76.183% α-linolenic acid. [Conclusion] Supercritical CO2 extraction was proven to be an effective technology to extract oil from perilla seed, and GCMS was also a satisfactory method for analyzing the compositions of perilla seed oil.
基金the National Natural Science Foundation of China (No. 29376233).
文摘Microparticle formation and crystallization rate of 1,3,5,7-tetranitro-l,3,5,7-tetraazacyclooctane (HMX) in acetone solution using supercritical carbon dioxide antisolvent (GAS) recrystallization were studied. Scanning electronic microscopy, X-ray diffraction and infrared radiation were used to examine particle size, crystallinity and chemical structure. The results show that B-HMX microparticle in different average size (2-9.5um) and with narrow size distribution were obtained by controlling the expansibility, expansion speed, initial concentration and temperature during recrystallization of HMX. The formation of nuclei may be a main cause of consumption of solute when the solution is expanded rapidly enough and the equilibrium concentration is lower, in which almost monodisperse microparticle can be obtained.
基金support from the National Natural Science Fund (50904073)the CNPC Science and Technology Innovation Fund (2008D-5006-02-06)
文摘Supercritical carbon dioxide (scCO2) microemulsion was formed by supercritical CO2, H20, sodium bis(2-ethylhexyl) sulfosuccinate (AOT, surfactant) and C2HsOH (co-surfactant) under pressures higher than 8 MPa at 45 ℃. The fundamental characteristics of the scCO2 microemulsion and the minimum miscibility pressure (MMP) with Daqing oil were investigated with a high-pressure falling sphere viscometer, a high-pressure interfacial tension meter, a PVT cell and a slim tube test. The mechanism of the scCO2 microemulsion for enhancing oil recovery is discussed. The results showed that the viscosity and density of the scCO2 microemulsion were higher than those of the scCO2 fluid at the same pressure and temperature. The results of interfacial tension and slim tube tests indicated that the MMP of the scCO2 microemulsion and crude oil was lower than that of the scCO2 and crude oil at 45 ℃. It is the combined action of viscosity, density and MMP which made the oil recovery efficiency of the scCO2 microemulsion higher than that of the scCO2 fluid.
基金This work was funded by the National Natural Science Foundation of China(No.51576188).
文摘Compared with the conventionally gaseous or liquid working media,the specific internal energy of supercritical carbon dioxide(SCD)is higher at the same temperature and pressure,and the critical temperature of carbon dioxide is close to room temperature,making SCD a potential new working medium for pneumatic launch.To analyze the feasibility of this conception,an analytical model of a pneumatic catapult is established on basis of the conservations of mass and energy.The model consists of a high-pressure chamber and a low-pressure chamber connected by multiple valves,and there is a movable piston in the low-pressure chamber that can push an aircraft to accelerate.The effects of the launch readiness state of SCD in the high-pressure chamber,the initial volume of the low-pressure chamber and the valve control on the movement of the aircraft are analyzed.It is found that there is a restrictive relation between the temperature and pressure of the launch readiness state of SCD,i.e.,there is a maximum allowable launch readiness pressure when the launch readiness temperature is fixed.If this restrictive relation is not satisfied,the working medium in the low-pressure chamber will drop to its triple point within a few milliseconds,leading to a launch failure.Owing to this restrictive relation,there is an optimal launch readiness state of SCD with the highest working capacity for any allowable launch readiness temperature.The pressure of the low-pressure chamber will decrease significantly as the initial volume increases,leading to a decreased acceleration of the aircraft.The acceleration can be controlled below a critical value by a designed sequential blasting technique of multiple valves.The calculated results show that a 500 kg aircraft can be accelerated from 0 to 58 m/s in 0.9 s with 36 kg of carbon dioxide.This research provides a new technique for the controllable cold launch of an aircraft.
基金National Natural Science Foundation of China(Grant No.51804318)the China Postdoctoral Science Foundation Founded Project(Grant No.2019M650963)National Key Basic Research and Development Program of China(Grant No.2014CB239203).
文摘Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyzed the fracture surface characteristics induced by supercritical carbon dioxide(SC-CO_(2))and water in open-hole and perforation completion conditions under triaxial stresses.A simple calculation method was proposed to quantitatively analyze the fracture surface area and roughness in macro-level based on three-dimensional(3D)scanning data.In micro-level,scanning electron micrograph(SEM)was used to analyze the features of fracture surface.The results showed that the surface area of the induced fracture increases with perforation angle for both SC-CO_(2)and water fracturing,and the surface area of SC-CO_(2)-induced fracture is 6.49%e58.57%larger than that of water-induced fracture.The fractal dimension and surface roughness of water-induced fractures increase with the increase in perforation angle,while those of SC-CO_(2)-induced fractures decrease with the increasing perforation angle.A considerable number of microcracks and particle peeling pits can be observed on SC-CO_(2)-induced fracture surface while there are more flat particle surfaces in water-induced fracture surface through SEM images,indicating that fractures tend to propagate along the boundary of the particle for SC-CO_(2)fracturing while water-induced fractures prefer to cut through particles.These findings are of great significance for analyzing fracture mechanism and evaluating fracturing stimulation performance.
文摘Vapor-liquid phase equilibrium data including composition,densities,molar volume and equilibrium constant of isobutanol in supercritical carbon dioxide from 313.2K to 353.2K were measured in a variable-volume visual cell.The properties of critical point were obtained by extrapolation.The results showed that critical temperature,critical pressure and critical compressibility factor of CO2-isobutanol system decreased with the increase of critical CO2 content.The phase equilibrium model was established by Peng-Robinson equation of state and van der Waals-2 mixing regulation,and model parameters were determined by optimization calculation of nonlinear least square method.The correlation between calculated values and the experimental data showed good agreement.
基金founded by the National Key R&D Program of China(Contract No.2016YFB060010)National Natural Science Foundation of China(Grant Nos.51606026 and 51876021)the Fundamental Research Funds for the Central Universities.
文摘For a radial inflow turbine(RIT),leakage flow in impeller backface cavity has critical impacts on aerodynamic performance of the RIT and axial force acting on the RIT impeller.In order to control this leakage flow,different types of labyrinth seals are numerically studied in this paper based on a supercritical carbon dioxide(S-CO_(2))RIT.The effects of seal clearance and cavity outlet pressure are first analyzed,and the impacts of seal design parameters,including height,number and shape of seal teeth,are evaluated.Results indicate that adding labyrinth seal can improve cavity pressure and hence adequately inhibits leakage flow.Decreasing the seal clearance and increasing the height of seal teeth are beneficial to improve sealing performance,and the same effect can be obtained by increasing the number of seal teeth.Meanwhile,employing seals can reduce leakage loss and improve RIT efficiency under a specific range of cavity outlet pressure.Finally,the influences of seal types on the flow field in seal cavity are numerically analyzed,and results demonstrate that isosceles trapezoidal type of seal cavity has better sealing performance than triangular,rectangular and right-angled trapezoidal seal cavities.
基金Supported by the National Natural Science Foundation of China (20506014).
文摘The process based on supercritical fluid extraction for reprocessing of the spent nuclear fuel has some remarkable advantages over the plutonium-uranium extraction(PUREX) process.Especially,it can minimize the generation of secondary waste.Dynamic reactive extraction of neodymium oxide(Nd2O3) in supercritical carbon dioxide(SC-CO2) containing tri-n-butyl phosphate-nitric acid(TBP-HNO3) complex was investigated.Temperature showed a positive effect on the extraction efficiency,while pressure showed a negative effect when the unsaturated TBP-HNO3 complex was employed for the dynamic reactive extraction of Nd2O3 in SC-CO2.Both temperature and pressure effects indicated that the kinetic process of the reactive extraction was controlled by the chemical reaction.A kinetic model was proposed to describe the extraction process.
基金Supported by the Intensification of Research in Priority Areas Project (IRPA)Ministry of Science, Technology and Innovation,Malaysia (No.09-02-03-0101-EA0001).
文摘Andrographis paniculata Nees has been extensively used for traditional medicine and help against fever dysentery, diarrhoea, inflammation, and sore throat. In this study, andrographolide, the main component of this plant was extracted from the leaves of A. paniculata using supercritical carbon dioxide. The operating pressures were varied from 7.50 to 20MPa, the temperatures were varied from 30℃ to 60℃, and the flow rates were varied from 0.5 to 4ml.min^-1. The best extraction condition occurred at 10MPa, 40℃, and a flow rate of 2ml.min^-1 for a 3g sample of A. paniculata ground-dried leaves. The measured extraction rate was found to be about 0.0174g of andrographolide per gram of andrographolide present in the leaves per hour of operation. The future studies must focus on the interaction between the various operating parameters such as temperature, pressure, and flow rate of supercritical carbon dioxide.
基金Project (2015A030306026) supported by the Natural Science Funds for Distinguished Young Scholar of Guangdong Province,ChinaProject (51275176) supported by the National Natural Science Foundation of China+1 种基金Project (2016A010102009) supported by the Science and Technology Planning of Guangdong Province,ChinaProject (201707010055) supported by the Science and Technology Planning of Guangzhou City,China
文摘To avoid the defects caused by the hydrogen evolution and improve the corrosion and wear properties of the electroplated films in the traditional aqueous bath electrodeposition,a supercritical carbon dioxide(Sc-CO2)emulsion was proposed to electrodeposite ternary nanocrystalline Co-Ni-P alloy films.Microstructure,corrosive and tribological properties of the Co-Ni-P films were investigated and compared with the ones electroplated by conventional method.The results show that the Co-Ni-P films produced with Sc-CO2assisted electrodeposition exhibit a more compact microstructure.The preferred orientation plane of hcp(110)for the Co-Ni-P films produced in conventional aqueous bath is changed to be hcp(100)for the one prepared in emulsified Sc-CO2bath.The microhardness,corrosion resistance and tribological properties of the Co-Ni-P films are substantially improved with the assistance of Sc-CO2in the electrodeposition bath.
基金The project was sponsored by the National Natural Science Foundation of China(No.20607031)the Scientific Research Foundation for the Returned 0verseas Chinese Scholars,State Education Ministry(2006-331)+1 种基金We are also grateful to Key Natural Science Fundation of South-Central University for Nationalities(YZZ05001)"Youth Chen-Guang Project"of Wuhan Bureau of Science and Technology(20065004116-34)for financial supports.
文摘A series of glucose derivatives have been used as chelating reagents to extract metal ions in supercritical carbon dioxide. With perfluoro-l-octanesulfonic acid tetraethylammonium salt as additive, glucose derivatives were selective for Sr^2+ and Pb^2+ extraction in supercritical carbon dioxide.
基金Project(21JCQN0066)supported by the Youth Science&Technology Foundation of Sichuan Province,China。
文摘Corrosion behaviors of P110 and N80 tubular steels in CO_(2) gas phase and supercritical(S-CO_(2))phase in a saturated water vapor environment were explored in corrosion weight loss experiments by SEM,EDS,XRD,XPS and cross-section analysis techniques.With the increase in CO_(2) partial pressure,the average corrosion rate increased first and then decreased.The average corrosion rate reached the maximum value under the near-critical pressure.When CO_(2) partial pressure further increased to be above the critical pressure,the average corrosion rate gradually decreased and local aggregation of molecules was weakened.
基金supported by the Public Welfare Industry (Agriculture) Research Program,China (200903018)
文摘Supercritical carbon dioxide (SC-CO2) extraction was employed to extract oil from Nigella glandulifera Freyn seed in this study. Response surface methodology (RSM) was applied to evaluate the effects of the process parameters (pressure, temperature, and CO2 flow rate) on oil yield of N. glandulifera seed. A Box-Behnken design was used to optimize the extraction parameters. The analysis of variance indicated that the linear coefficients of pressure and CO2 flow rate, the quadratic term coefficients of pressure and temperature and the interactions between pressure and temperature, as well as temperature and CO2 flow rate, had significant effects on the oil yield (P〈0.05). The optimal conditions to obtain the maximum oil yield from N. glandulifera seed were pressure 30.84 MPa, temperature 40.57°C, and CO2 flow rate 22.00 L h-1. Under these optimal conditions, the yield of oil was predicted to be 38.19%. The validation experiment results agreed with the predicted values. The fatty acid composition of N. glandulifera seed oil extracted using SC-CO2 was compared with that of oil obtained by Soxhlet method. The results showed that the fatty acid compositions of oil extracted by the two methods were similar. Identification of oil compounds with gas chromatography-mass spectrometry (GC-MS) showed that the contents of unsaturated fatty acids linoleic acid (48.30%), oleic acid (22.28%) and saturated fatty acids palmitic acid (16.65%), stearic acid (4.17%) were the most abundant fatty acids in seed oil from N. glandulifera.
基金the National Natural Science Foundation of China(Grant No.52004236)Sichuan Science and Technology Program(Grant No.2021JDRC0114)+3 种基金the Starting Project of SWPU(Grant No.2019QHZ009)the China Postdoctoral Science Foundation(Grant No.2020M673285)the Open Project Program of Key Laboratory of Groundwater Resources and Environment(Jilin University),Ministry of Education(Grant No.202005009KF)the National Key Basic Research Program of China(Grant No.2014CB239203)for the financial support of this work。
文摘To investigate fracture generation and strain variation during SC-CO_(2)(supercritical carbon dioxide)jet fracturing,the model of induced strain is established and the experiments are comprehensively studied.The influence factors are comprehensively explored,such as jet pressure,ambient pressure,etc.With the increasing jet pressure,the fracture morphology changes from parallel cracks to oblique cracks.Both the mass loss of specimen and CO_(2) absorption increase significantly,and the growth rate and minimum value of strain also rise exponentially.Under a high ambient pressure of 8.0 MPa,the main fractures mostly propagated from the surface to the bottom surface of the specimen.The maximum strain and the stable duration under higher ambient pressure are 1.5 times and 10 times,respectively,of the case under the ambient pressure of 5.0 MPa.The comparison shows that the optimal jet distance is 5-7 times the nozzle diameter,resulting in massive mass loss,large CO_(2)absorption,and peak strain.Moreover,the nonlinear variation of strain curve during jet pressurization is related to the type of rock and ambient pressure.These studies clearly show the relationship between the fracture morphology and induced strain,which are crucial for SC-CO_(2)fracturing in shale gas reservoirs.
基金Supported by the National Natural Science Foundation of China (20776066, 20476044) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20060291002).
文摘The structural and dynamical properties of hexafluoroacetylacetone(HFA) and acetylacetone(AA) at the water/supercritical CO2(Sc-CO2) interface at 20 MPa and 318.15 K are investigated by molecular dynamics simulations.The TIP3P potential is used for water and the EPM2 model is for CO2.The water phase and SC-CO2 phase form a distinct immiscible liquid-liquid interface.The two chelating molecules show interfacial preference.Comparatively,the AA molecules show somewhat more preference for interfacial region,whereas the HFA molecules are preferably near the Sc-CO2 phase.The orientational distribution of the β-diketone molecules and the radial distribution functions between β-diketones and solvents are obtained in order to study the microscopic structural properties of the β-diketones at the water-SC-CO2 interface.It is found that the translational diffusion and rotational diffusion of HFA and AA are obviously anisotropic and decrease as the β-diketone molecules approach the interface.The anisotropic dynamic behavior for the solute molecules is related to the corresponding structural properties.
基金This research is sponsored by the Project:“Support of research and development activities of the J.Selye University in the field of Digital Slovakia and creative industry”of the Research&Innovation Operational Programme(ITMS code:NFP313010T504)co-funded by the European Regional Development Fund.
文摘In the present work,a novel machine learning computational investigation is carried out to accurately predict the solubility of different acids in supercritical carbon dioxide.Four different machine learning algorithms of radial basis function,multi-layer perceptron(MLP),artificial neural networks(ANN),least squares support vector machine(LSSVM)and adaptive neuro-fuzzy inference system(ANFIS)are used to model the solubility of different acids in carbon dioxide based on the temperature,pressure,hydrogen number,carbon number,molecular weight,and the dissociation constant of acid.To evaluate the proposed models,different graphical and statistical analyses,along with novel sensitivity analysis,are carried out.The present study proposes an efficient tool for acid solubility estimation in supercritical carbon dioxide,which can be highly beneficial for engineers and chemists to predict operational conditions in industries.