For a better understanding of the feasibility of supercritieal fluid dyeing (SFD) and more available information for the process development, the experiments of dyeing PET textile with C.I. disperse red 60 (anthraq...For a better understanding of the feasibility of supercritieal fluid dyeing (SFD) and more available information for the process development, the experiments of dyeing PET textile with C.I. disperse red 60 (anthraquinone type) and C. I. disperse orange 25 (azo type) in supercritieal CO2 were carried out with a high-pressure dyeing apparatus at temperatures from 80 to 130℃ and pressure up to 31 MPa. The effect of operating conditions on color yield (K/S) was investigated in SFD experiment, and the optimum operating conditions for the above two disperse dyes were obtained as follows: the temperature 120℃, the pressure 25 MPa and the dyeing time 100 min. As compared with SFD, the conventional water dyeing (CWD) was carried out with the same dyes and textile. The results show that the better fastness, levelness and apparent color can be achieved in SFD and the SFD process has many significant advantages over the CWD process.展开更多
The clothing industry is considered one of the most polluting industries on the planet due to the high consumption of water,energy,chemicals/dyes,and high generation of solid waste and effluents.Faced with environment...The clothing industry is considered one of the most polluting industries on the planet due to the high consumption of water,energy,chemicals/dyes,and high generation of solid waste and effluents.Faced with environmental concerns,the textile ennoblement sector is the most critical of the textile production chain,especially the traditional dyeing processes.As an alternative to current problems,dyeing with supercritical CO_(2)(scCO_(2))has been presented as a clean and efficient process for a sustainable textile future.Supercritical fluid dyeing(SFD)has shown a growing interest due to its significant impact on environmental preservation and social,economic,and financial gains.The main SFD benefits include economy and reuse of non-adsorbed dyes;reduction of process time and energy expenditure;capture of atmospheric CO_(2)(greenhouse gas);use and recycling of CO_(2)in SFD;generation of carbon credits;water-free process;effluent-free process;reduction of CO_(2)emission and auxiliary chemicals.Despite being still a non-scalable and evolving technology,SFD is the future of dyeing.This review presented a comprehensive overview of the environmental impacts caused by traditional processes and confronted the advantages of SFD.The SFD technique was introduced,along with its latest advances and future perspectives.Financial and environmental gains were also discussed.展开更多
基金Supported by National Natural Science Foundation of China(No.20277004)
文摘For a better understanding of the feasibility of supercritieal fluid dyeing (SFD) and more available information for the process development, the experiments of dyeing PET textile with C.I. disperse red 60 (anthraquinone type) and C. I. disperse orange 25 (azo type) in supercritieal CO2 were carried out with a high-pressure dyeing apparatus at temperatures from 80 to 130℃ and pressure up to 31 MPa. The effect of operating conditions on color yield (K/S) was investigated in SFD experiment, and the optimum operating conditions for the above two disperse dyes were obtained as follows: the temperature 120℃, the pressure 25 MPa and the dyeing time 100 min. As compared with SFD, the conventional water dyeing (CWD) was carried out with the same dyes and textile. The results show that the better fastness, levelness and apparent color can be achieved in SFD and the SFD process has many significant advantages over the CWD process.
文摘The clothing industry is considered one of the most polluting industries on the planet due to the high consumption of water,energy,chemicals/dyes,and high generation of solid waste and effluents.Faced with environmental concerns,the textile ennoblement sector is the most critical of the textile production chain,especially the traditional dyeing processes.As an alternative to current problems,dyeing with supercritical CO_(2)(scCO_(2))has been presented as a clean and efficient process for a sustainable textile future.Supercritical fluid dyeing(SFD)has shown a growing interest due to its significant impact on environmental preservation and social,economic,and financial gains.The main SFD benefits include economy and reuse of non-adsorbed dyes;reduction of process time and energy expenditure;capture of atmospheric CO_(2)(greenhouse gas);use and recycling of CO_(2)in SFD;generation of carbon credits;water-free process;effluent-free process;reduction of CO_(2)emission and auxiliary chemicals.Despite being still a non-scalable and evolving technology,SFD is the future of dyeing.This review presented a comprehensive overview of the environmental impacts caused by traditional processes and confronted the advantages of SFD.The SFD technique was introduced,along with its latest advances and future perspectives.Financial and environmental gains were also discussed.