期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preparation of TiO_2-MoO_3 nano-composite photo-catalyst by supercritical fluid dry method 被引量:6
1
作者 ZHANGJing-chang LIQing CAOWei-liang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第2期350-352,共3页
A series of TiO 2-MoO 3 nano-composite photocatalysts were prepared by supercritical fluid dry method(SCFD) and an impregnation technique with TiCl 4 and (NH 4) 6Mo 7O 24 ·4H 2O as the starting materia... A series of TiO 2-MoO 3 nano-composite photocatalysts were prepared by supercritical fluid dry method(SCFD) and an impregnation technique with TiCl 4 and (NH 4) 6Mo 7O 24 ·4H 2O as the starting materials. The catalysts were characterized by the means of XRD, TEM and UV-Vis. Methyl orange was used as model compound for the evaluation of their catalytic activities. The results indicated that the photo-catalyst prepared by SCFD had the advantages of small size(12.84 nm), narrow distribution and good dispersivity. The presence of small amount of Mo in composite catalyst gives rise to the red shift of its absorbance wavelength, decrease of its energy gap and increase of the utility of visible light. Furthermore, higher surface acidity of the photo-catalyst was obtained as the result of the addition of MoO 3. Compared with pure TiO 2, the catalytic activity of the TiO 2-MoO 3 nano-composite photo-catalyst was improved significantly. As the doping concentration of the composite catalysts was controlled at 0.6%(molar percentage), 100% degradation of methyl orange was achieved with in 1.2 h irradiation time. 展开更多
关键词 TiO 2 MoO 3 PHOTOCATALYTIC supercritical fluid dry method
下载PDF
Preparation of (Ti, Sn)O_2 Nano-Composite Photocatalyst by Supercritical Fluid Dry Combination Technology 被引量:1
2
作者 Jingchang ZHANG, Qing LI and Weiliang CAO Institute of Modern Catalysis, The Key Laboratory of Science and Technology of Controllable Chemical Reactions, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第2期191-195,共5页
A series of TiO2-SnO2 nano-sized composite photo-catalysts containing Sn (9.3%-30.1%) were prepared from TiCI4 and SnCl4·5H2O by using sol-gel, supercritical fluid dry and solid-phase reaction (SCFD) combination ... A series of TiO2-SnO2 nano-sized composite photo-catalysts containing Sn (9.3%-30.1%) were prepared from TiCI4 and SnCl4·5H2O by using sol-gel, supercritical fluid dry and solid-phase reaction (SCFD) combination technology. Characterizations with X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR) showed that, in addition to anatase type TiO2, a new active phase (Ti, Sn)O2 (with particle size of 2.0-4.3 nm) formed, and there were no SnO2 crystals observed in the range of the doping concentration studied. Photo-catalytic reaction of phenol was used as a model reaction to evaluate the catalytic activities of the obtained catalysts. Compared with pure TiO2 or Ti-Sn catalyst prepared with general sol-gel method, Ti-Sn nano-composite photo-catalyst thus obtained showed significant improvement in catalytic activity. The photo-catalytic degradation rate of phenol could reach as high as 93.5% after 7 h. The preparation conditions of the new phase (Ti, Sn)O2 were investigated and its catalytic mechanism was proposed. The photo-catalytic particles prepared using SCFD combination technology exhibited small particle size, large surface area and high activity. 展开更多
关键词 Anatase TiO2 (Ti Sn)O2 Photo-catalytic supercritical fluid dry method Solid-phase reaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部