期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical Study on Rock Breaking Mechanism of Supercritical CO_(2)Jet Based on Smoothed Particle Hydrodynamics 被引量:1
1
作者 Xiaofeng Yang Yanhong Li +2 位作者 Aiguo Nie Sheng Zhi Liyuan Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期1141-1157,共17页
Supercritical carbon dioxide(Sc-CO_(2))jet rock breaking is a nonlinear impact dynamics problem involving many factors.Considering the complexity of the physical properties of the Sc-CO_(2)jet and the mesh distortion ... Supercritical carbon dioxide(Sc-CO_(2))jet rock breaking is a nonlinear impact dynamics problem involving many factors.Considering the complexity of the physical properties of the Sc-CO_(2)jet and the mesh distortion problem in dealing with large deformation problems using the finite element method,the smoothed particle hydrodynamics(SPH)method is used to simulate and analyze the rock breaking process by Sc-CO_(2)jet based on the derivation of the jet velocity-density evolution mathematical model.The results indicate that there exists an optimal rock breaking temperature by Sc-CO_(2).The volume and length of the rock fracture increase with the rising of the jet temperature but falls when the jet temperature exceeds 340 K.With more complicated perforation shapes and larger fracture volumes,the Sc-CO_(2)jet can yield a rock breaking more effectively than water jet,The stress analysis shows that the Sc-CO_(2)rock fracturing process could be reasonably divided into three stages,namely the fracture accumulation stage,the rapid failure stage,and the breaking stabilization stage.The high diffusivity of Sc-CO_(2)is identified as the primary cause of the stress fluctuation and W-shaped fracture morphology.The simulated and calculated results are generally in conformity with the published experimental data.This study provides theoretical guidance for further study on Sc-CO_(2)fracturing mechanism and rock breaking efficiency. 展开更多
关键词 supercritical carbon dioxide jet rock breaking SPH stress distribution erosion morphology.
下载PDF
Numerical simulation of the abrasive supercritical carbon dioxide jet: The flow field and the influencing factors 被引量:6
2
作者 贺振国 李根生 +4 位作者 王海柱 沈忠厚 田守嶒 陆沛青 郭斌 《Journal of Hydrodynamics》 SCIE EI CSCD 2016年第2期238-246,共9页
The supercritical carbon dioxide (SC-CO2) jet can break rocks at higher penetration rates and lower threshold pressures than the water jet. The abrasive SC-CO2 jet, formed by adding solid particles into the SC-CO2 j... The supercritical carbon dioxide (SC-CO2) jet can break rocks at higher penetration rates and lower threshold pressures than the water jet. The abrasive SC-CO2 jet, formed by adding solid particles into the SC-CO2 jet, is expected to achieve higher operation efficiency in eroding hard rocks and cutting metals. With the computational fluid dynamics numerical simulation method, the characteristics of the flow field of the abrasive SC-CO2 jet are analyzed, as well as the main influencing factors. Results show that the two-phase axial velocities of the abrasive SC-CO2 jet is much higher than those of the abrasive water jet, when the pressure difference across the jet nozzle is held constant at 20 MPa, the optimal standoff distance for the largest particle impact velocity is approximately 5 times of the jet nozzle diameter; the fluid temperature and the volume concentration of the abrasive particles have modest influences on the two-phase velocities, the ambient pressure has a negligible influence when the pressure difference is held constant. Therefore the abrasive SC-CO2 jet is expected to assure more effective erosion and cutting performance. This work can provide guidance for subsequent lab experiments and promote practical applications. 展开更多
关键词 abrasive supercritical carbon dioxide jet numerical simulation velocity distribution impact factor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部