期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Numerical simulation of flow and heat transfer of n-decane in sub-millimeter spiral tube at supercritical pressure
1
作者 Jiahao Xing Huaizhi Han +1 位作者 Ruitian Yu Wen Luo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期173-185,共13页
The flow and heat transfer characteristics of n-decane in the sub-millimeter spiral tube(SMST) at supercritical pressure(p = 3 MPa) are studied by the RNG k-ε numerical model in this paper. The effects of various Rey... The flow and heat transfer characteristics of n-decane in the sub-millimeter spiral tube(SMST) at supercritical pressure(p = 3 MPa) are studied by the RNG k-ε numerical model in this paper. The effects of various Reynolds numbers(Re) and structural parameters pitch(s) and spiral diameter(D) are analyzed.Results indicate that the average Nusselt numberNu and friction factorNu increase with an increase in Re, and decrease with an increase in D/d(tube diameter). In terms of the structural parameter s/d, it is found that as s/d increases, the Nu first increase, and then decrease. and the critical structural parameter is s/d = 4. Compared with the straight tube, the SMST can improve Nu by 34.8% at best, while it can improve Nu by 102.1% at most. In addition, a comprehensive heat transfer coefficient is applied to analyze the thermodynamic properties of SMST. With the optimal structural parameters of D/d = 6 and s/d = 4, the comprehensive heat transfer factor of supercritical pressure hydrocarbon fuel in the SMST can reach 1.074. At last, correlations of the average Nusselt number and friction factor are developed to predict the flow and heat transfer of n-decane at supercritical pressure. 展开更多
关键词 Sub-millimeter spiral tube supercritical pressure Numerical simulation Heat transfer performance
下载PDF
Operation Experience of the First Supercritical Pressure Unit and Its Developmental Prospect
2
《Electricity》 1997年第4期15-17,共3页
关键词 Operation Experience of the First supercritical pressure Unit and Its Developmental Prospect
下载PDF
Numerical Investigation of Jet Impingement Cooling with Supercritical Pressure Carbon Dioxide in a Multi-Layer Cold Plate during High Heat Flux
3
作者 WEN Yaming LI Yulong +1 位作者 LI Jingqi YU Xin-Gang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期237-253,共17页
Jet impingement cooling with supercritical pressure carbon dioxide in a multi-layer cold plate during the heat flux of 400 W/cm_(2) is investigated numerically.The generation and distribution of pseudocritical fluid w... Jet impingement cooling with supercritical pressure carbon dioxide in a multi-layer cold plate during the heat flux of 400 W/cm_(2) is investigated numerically.The generation and distribution of pseudocritical fluid with the high specific heat of supercritical pressure carbon dioxide and the mechanism of the heat transfer enhancement led by the high specific heat are analyzed.For a given nozzle diameter,the effects of the geometric parameters of a multi-layer cold plate such as the relative nozzle-to-plate distance,relative plate thickness,and relative upper fluid thickness on the average heat transfer coefficient are studied.The results show that the target surface is cooled effectively with supercritical pressure carbon dioxide jet impingement cooling.When the radial distance is less than 6 mm,the maximum wall temperature is 368 K,which is 30 K lower than the maximum junction temperature for a silicon-based insulated gate bipolar transistor,a typical electronic power device.There is a pseudocritical fluid layer near the target surface,where specific heat reaches above 34 kJ/(kg·K)locally.The drastic rise of the specific heat leads to obvious heat transfer enhancement.Within a certain range,the local heat transfer coefficient and the specific heat are linearly correlated and Stanton number remains constant over this range.The heat transfer coefficient is at a maximum when the relative nozzle-to-plate distance is 1.As the relative plate thickness increases from 0.5 to 3.5 or the relative upper fluid thickness increases from 0.5 to 2.5,the average heat transfer coefficient decreases monotonically. 展开更多
关键词 high heat flux jet impingement cooling supercritical pressure carbon dioxide heat transfer enhancement
原文传递
Effect of turbulence models on predicting convective heat transfer to hydrocarbon fuel at supercritical pressure 被引量:9
4
作者 Tao Zhi Cheng Zeyuan +1 位作者 Zhu Jianqin Li Haiwang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1247-1261,共15页
A variety of turbulence models were used to perform numerical simulations of heat transfer for hydrocarbon fuel flowing upward and downward through uniformly heated vertical pipes at supercritical pressure. Inlet temp... A variety of turbulence models were used to perform numerical simulations of heat transfer for hydrocarbon fuel flowing upward and downward through uniformly heated vertical pipes at supercritical pressure. Inlet temperatures varied from 373 K to 663 K, with heat flux rang- ing from 300 kW/m2 to 550 kW/m2. Comparative analyses between predicted and experimental results were used to evaluate the ability of turbulence models to respond to variable thermophysical properties of hydrocarbon fuel at supercritical pressure. It was found that the prediction performance of turbulence models is mainly determined by the damping function, which enables them to respond differently to local flow conditions. Although prediction accuracy for experimental results varied from condition to condition, the shear stress transport (SST) and launder and sharma models performed better than all other models used in the study. For very small buoyancy-influenced runs, the thermal-induced acceleration due to variations in density lead to the impairment of heat transfer occurring in the vicinity of pseudo-critical points, and heat transfer was enhanced at higher temperatures through the combined action of four thermophysical properties: density, viscosity, thermal conductivity and specific heat. For very large buoyancy- influenced runs, the thermal-induced acceleration effect was over predicted by the LS and AB models. 展开更多
关键词 Buoyancy effect Hydrocarbon fuel supercritical pressure Turbulence models Variable properties
原文传递
Three-dimensional numerical study of supercritical pressure effect on heat transfer of cryogenic methane 被引量:6
5
作者 RUAN Bo MENG Hua 《航空动力学报》 EI CAS CSCD 北大核心 2011年第7期1480-1487,共8页
A three-dimensional numerical study of the turbulent convective heat transfer of the cryogenic methane flowing inside a square engine cooling channel under supercritical pressures was systematically conducted.Numerica... A three-dimensional numerical study of the turbulent convective heat transfer of the cryogenic methane flowing inside a square engine cooling channel under supercritical pressures was systematically conducted.Numerical results indicate that increasing the fluid pressure results in enhanced heat transfer of the cryogenic methane under supercritical pressures.At the pseudo-critical temperature under a corresponding supercritical pressure,drastic property variations cause heat transfer deterioration and sharp wall temperature increase at a high wall heat flux of 7MW/m2.A modified Jackson and Hall heat transfer equation,which can be used for supercritical heat transfer calculations of the cryogenic methane,has been successfully established in this paper. 展开更多
关键词 supercritical heat transfer supercritical pressure regenerative cooling cryogenic methane numerical study
原文传递
Numerical investigation of pyrolysis effects on heat transfer characteristics and flow resistance of n-decane under supercritical pressure 被引量:3
6
作者 Zhi TAO Xizhuo HU +1 位作者 Jianqin ZHU Hongwei WU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第6期1249-1257,共9页
Pyrolysis of hydrocarbon fuel plays an important role in the regenerative cooling process. In this article, a Two-Dimensional(2D) numerical model is proposed to investigate the pyrolysis effects on the heat transfer... Pyrolysis of hydrocarbon fuel plays an important role in the regenerative cooling process. In this article, a Two-Dimensional(2D) numerical model is proposed to investigate the pyrolysis effects on the heat transfer characteristics and flow resistance of n-decane under supercritical pressure. The one-step global pyrolytic reaction mechanism consisting of 19 species is adopted to simulate the pyrolysis process of n-decane. The thermophysical and transport properties of the fluid mixture are computed and incorporated into the numerical model for simulation. Comparisons between the current predictions and the open published experimental data are carried out and good agreement is achieved. In order to better understand the complicated physicochemical process, further investigations on the turbulent flow and heat transfer coupled with pyrolysis in a tube have been performed under various operating conditions. The results indicate that the pyrolysis intensively takes place in the high fluid temperature region. The occurrence of the heat transfer deterioration would lead to increasing n-decane conversion at the beginning of the heated section. It is found that the pyrolysis could improve the heat transfer deterioration and promote the heat transfer enhancement. Meanwhile, pyrolysis gives rise to an abrupt increase of flow resistance. The mechanisms of the physicochemical phenomena are also analyzed in a systematic manner, which would be very helpful in the development of the regenerative cooling technology. 展开更多
关键词 N-DECANE Convective heat transfer Flow resistance PYROLYSIS supercritical pressure
原文传递
Model validation and parametric study of fluid flows and heat transfer of aviation kerosene with endothermic pyrolysis at supercritical pressure 被引量:3
7
作者 Keke Xu Hua Meng 《Propulsion and Power Research》 SCIE 2015年第4期202-211,共10页
The regenerative cooling technology is a promising approach for effective thermal protection of propulsion and power-generation systems.A mathematical model has been used to examine fluid flows and heat transfer of th... The regenerative cooling technology is a promising approach for effective thermal protection of propulsion and power-generation systems.A mathematical model has been used to examine fluid flows and heat transfer of the aviation kerosene RP-3 with endothermic fuel pyrolysis at a supercritical pressure of 5 MPa.A pyrolytic reaction mechanism,which consists of 18 species and 24 elementary reactions,is incorporated to account for fuel pyrolysis.Detailed model validations are conducted against a series of experimental data,including fluid temperature,fuel conversion rate,various product yields,and chemical heat sink,fully verifying the accuracy and reliability of the model.Effects of fuel pyrolysis and inlet flow velocity on flow dynamics and heat transfer characteristics of RP-3 are investigated.Results reveal that the endothermic fuel pyrolysis significantly improves the heat transfer process in the high fluid temperature region.During the supercritical-pressure heat transfer process,the flow velocity significantly increases,caused by the drastic variations of thermophysical properties.Under all the tested conditions,the Nusselt number initially increases,consistent with the increased flow velocity,and then slightly decreases in the high fluid temperature region,mainly owing to the decreased heat absorption rate from the endothermic pyrolytic chemical reactions. 展开更多
关键词 supercritical pressures Hydrocarbon fuel Convective heat transfer Fuel pyrolysis Regenerative cooling
原文传递
Frictional resistance of supercritical pressure RP-3 flowing in a vertically downward tube at constant heat fluxes
8
作者 Yinlong LIU Guoqiang XU +3 位作者 Yanchen FU Jie WEN Geng GONG Lulu LYU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第9期117-128,共12页
Based on the demands of compact heat exchangers and micro cooling channels applied for aviation thermal protection, the flow resistance characteristics of aviation kerosene RP-3 were experimentally studied in a vertic... Based on the demands of compact heat exchangers and micro cooling channels applied for aviation thermal protection, the flow resistance characteristics of aviation kerosene RP-3 were experimentally studied in a vertically downward circular miniature tube with an inner diameter of 1.86 mm at supercritical pressures and constant heat fluxes. A long and short tube method was used to accurately calculate the frictional pressure drop, and experimental conditions are supercritical pressures of 4 MPa, mass flow rates of 2–4 g/s(i.e., mass fluxes of 736–1472 kg/(m^(2)·s)), heat fluxes of 100–500 kW/m^(2), and inlet temperatures of 373–673 K. Results show that the sharp variations of thermophysical properties, especially density, have significant influences on frictional resistances.Generally, the frictional pressure drop and the friction factor increase with increasing inlet temperatures, and this trend speeds up in the relatively high-temperature region. However, the friction factor has a sudden decline when the fuel outlet temperature exceeds the pseudo-critical temperature.The frictional pressure drop and the friction factor basically remain unchanged with increasing heat flux when the inlet temperature is relatively low, but increase quickly when the inlet temperature is relatively high. Besides, a larger mass flux yields a higher pressure drop but does not necessarily yield a higher friction factor. Finally, an empirical friction factor correlation is proposed and shows better predictive performance than those of previous models. 展开更多
关键词 Aviation kerosene RP-3 Constant heat flux Empirical correlation Friction factor supercritical pressure Vertical tube
原文传递
Artificial neural network analysis of the Nusselt number and friction factor of hydrocarbon fuel under supercritical pressure
9
作者 Kaihang Tao Jianqin Zhu +1 位作者 Zeyuan Cheng Dike Li National 《Propulsion and Power Research》 SCIE 2022年第3期325-336,共12页
This paper presents the Nusselt number and friction factor model for hydrocarbon fuel under supercritical pressure in horizontal circular tubes using an artificial neural network(ANN)analysis on the basis of the back ... This paper presents the Nusselt number and friction factor model for hydrocarbon fuel under supercritical pressure in horizontal circular tubes using an artificial neural network(ANN)analysis on the basis of the back propagation algorithm.The derivation of the proposed model relies on a large number of experimental data obtained from the tests performed with the platform of supercritical flow and heat transfer.Different topology structures,training algo-rithms and transfer functions are employed in model optimization.The performance of the optimal ANN model is evaluated with the mean relative error,the determination coefficient,the number of iterations and the convergence time.It is demonstrated that the model has high prediction accuracy when the tansig transfer function,the Levenberg-Marquardt training algo-rithm and the three-layer topology of 4-9-1 are selected.In addition,the accuracy of the ANN model is observed to be the highest compared with other classic empirical correlations.Mean relative error values of 4.4%and 3.4%have been achieved for modeling of the Nusselt number and friction factor respectively over the whole experimental data set.The ANN model estab-lished in this paper is shown to have an excellent performance in learning ability and general-ization for characterizing the flow and heat transfer law of hydrocarbon fuel,which can provide an alternative approach for the future study of supercritical fluid characteristics and the associ-ated engineering applications. 展开更多
关键词 Artificial neural network(ANN) Nusselt number Friction factor supercritical pressure Hydrocarbon fuel
原文传递
Numerical study on non-uniform heat transfer deterioration of supercritical RP-3 aviation kerosene in a horizontal tube 被引量:9
10
作者 Yanhong Wang Yingnan Lu +1 位作者 Sufen Li Ming Dong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第6期1542-1557,共16页
The convective heat transfer of supercritical-pressure RP-3(Rocket Propellant 3)aviation kerosene in a horizontal circular tube has been numerically studied,focusing mainly on the non-uniform heat transfer deteriorati... The convective heat transfer of supercritical-pressure RP-3(Rocket Propellant 3)aviation kerosene in a horizontal circular tube has been numerically studied,focusing mainly on the non-uniform heat transfer deterioration along the circumferential direction.The governing equations of mass,momentum and energy have been solved using the pressure-based segregated solver based on the finite volume method.The re-normalization group(RNG)k-εturbulence model with an enhanced wall treatment was selected.Considering the heat conduction in the solid wall,the mechanism of heat transfer deterioration and the buoyancy effect on deteriorated heat transfer were discussed.The evolution of secondary flow was analyzed.Effects of the outer-wall heat flux,mass flux,pressure and tube thermal conductivity on heat transfer were investigated.Moreover,the buoyancy criterion and the heat transfer correlation were obtained.Results indicate that the poor flow performance of near-wall fluid causes the pseudo-film boiling,further leads to the heat transfer deterioration.The strong buoyancy has an effect of enhancing the heat transfer at the bottom of tube,and weakening the heat transfer at the top of tube,which results in the non-uniform inner-wall temperature and heat flux distributions.Decreasing the ratio of outer-wall heat flux and mass flux,increasing the pressure could weaken the heat transfer difference along the circumferential direction,while the effect of thermal conductivity of tube on the circumferential parameters distributions is more complicated.When the buoyancy criterion of(Grq/Grth)max≤0.8 is satisfied,the effect of buoyancy could be ignored.The new correlations work well for non-uniform heat transfer predictions. 展开更多
关键词 supercritical pressure Aviation kerosene Non-uniform heat transfer Heat transfer deterioration BUOYANCY Prediction correlation
下载PDF
Mechanism of CO_(2) enhanced oil recovery in shale reservoirs 被引量:1
11
作者 Hai-Bo Li Zheng-Ming Yang +6 位作者 Rui-Shan Li Ti-Yao Zhou He-Kun Guo Xue-Wei Liu Yi-Xin Dai Zhen-Guo Hu Huan Meng 《Petroleum Science》 SCIE CAS CSCD 2021年第6期1788-1796,共9页
Combined with NMR,core experiment,slim-tube tests,nano-CT and oil composition analysis,the mechanism of CO(2) enhanced oil recovery had been studied.CO_(2) flooding under supercritical state could achieve higher oil r... Combined with NMR,core experiment,slim-tube tests,nano-CT and oil composition analysis,the mechanism of CO(2) enhanced oil recovery had been studied.CO_(2) flooding under supercritical state could achieve higher oil recovery.In the process of crude oil displaced by supercritical CO2,the average oil recovery was 46.98% at low displacement pressures and 73.35% at high displacement pressures.The permeability of cores after CO2 flooding was only 28%-64% of those before flooding.As to the expelled oil,the contents of asphaltenes and non-hydrocarbons decreased,and saturated hydrocarbons of above C25 were absent in some samples,indicating that they had been retained in cores as demonstrated by CT and NMR experiments.In slim-tube tests,the heavy components of oil were expelled when the pressure increased to 30 MPa.There was a reasonable bottom hole pressure(BHP) below which the heavy components driven out from the far-well zone would deposit in the near-well zone,and when the pressure was too high,the nonhydrocarbon detention may cause block.The smaller throat and worse physical properties the porous media had,the higher displacement pressure would be required to achieve a good oil displacement efficiency.The increase in displacement pressure or time of interaction between oil and CO2 could effectively enhance oil recovery. 展开更多
关键词 Shale oil CO_(2) supercritical pressure NMR Core physical simulation Slim-tube test Component analysis Nano-CT
下载PDF
Flow field simulation of supercritical carbon dioxide jet: Comparison and sensitivity analysis 被引量:5
12
作者 王海柱 李根生 +3 位作者 田守嶒 程宇雄 贺振国 于水杰 《Journal of Hydrodynamics》 SCIE EI CSCD 2015年第2期210-215,共6页
As a new jet technology developed in recent years, the supercritical carbon dioxide(SC-CO2) jet technology enjoys many advantages when applied in oil and gas explorations. In order to study the properties and parame... As a new jet technology developed in recent years, the supercritical carbon dioxide(SC-CO2) jet technology enjoys many advantages when applied in oil and gas explorations. In order to study the properties and parametric influences of the SC-CO2 jet, the flow fields of the SC-CO2 jet are simulated using the computational fluid dynamics method. The flow field of the SC-CO2 is compared with that of the water jet. The influences of several parameters on the flow field of the SC-CO2 jet are studied. It is indicated that like the water jet, the velocity and the pressure of the SC-CO2 jet could be converted to each other, and the SC-CO2 jet can generate a significant impact pressure on the wall, the SC-CO2 jet has a stronger impact pressure and a higher velocity than those of the water jet under the same conditions, the maximum velocity and the impact pressure of the SC-CO2 jet increase with the increase of the nozzle pressure drop, under the stimulation condition of this study, the influence of the SC-CO2 temperature on the impact pressure can be neglected in engineering applications, while the maximum velocity of the SC-CO2 jet increases with the increase of the fluid temperature. This paper theoretically explores the properties of the SC-CO2 jet flow field, and the results might provide a theoretical basis for the application of the SC-CO2 jet in oil and gas well drillings and fracturing stimulations. 展开更多
关键词 supercritical carbon dioxide water jet confining pressure flow field drilling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部