The supercritical carbon dioxide (SC-CO2) drilling is a novel drilling technique developed in recent years. A detailed study of temperature and pressure distributions of the SC-CO2 jet on the bottom of a well is ess...The supercritical carbon dioxide (SC-CO2) drilling is a novel drilling technique developed in recent years. A detailed study of temperature and pressure distributions of the SC-CO2 jet on the bottom of a well is essensial to the SC-CO2 drilling. In this paper, the distributions of pressure and temperature on the bottom of the hole during the SC-CO2 jet drilling are simulated experimentally and numerically, and the impacts of the nozzle diameter, the jet length, and the inlet pressure of the SC-CO2 jet are analyzed. It is shown that, the bottom hole temperature and pressure increase with the increase of the nozzle diameter, and the bottom hole temperature reduces and the pressure increases first and then decreases with the increase of the jet length, indicating that the jet length has an optimum value. The increase of the inlet pressure can increase the temperature and pressure on the bottom, which has a positive effect on the drilling rate.展开更多
基金supported by the Major State Basic Research Development Program of China(Grant No.2014CB239202,2010CB226700)the National Natural Science Foundation of China(Grant No.51034007)the Natural Science Foundation of Shandong Province(Grant No.ZR2011EEZ003)
文摘The supercritical carbon dioxide (SC-CO2) drilling is a novel drilling technique developed in recent years. A detailed study of temperature and pressure distributions of the SC-CO2 jet on the bottom of a well is essensial to the SC-CO2 drilling. In this paper, the distributions of pressure and temperature on the bottom of the hole during the SC-CO2 jet drilling are simulated experimentally and numerically, and the impacts of the nozzle diameter, the jet length, and the inlet pressure of the SC-CO2 jet are analyzed. It is shown that, the bottom hole temperature and pressure increase with the increase of the nozzle diameter, and the bottom hole temperature reduces and the pressure increases first and then decreases with the increase of the jet length, indicating that the jet length has an optimum value. The increase of the inlet pressure can increase the temperature and pressure on the bottom, which has a positive effect on the drilling rate.