期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental study on boundary lubricity of superficial area of articular cartilage and synovial fluid
1
作者 Wenxiao LI Takehiro MORITA Yoshinori SAWAE 《Friction》 SCIE EI CAS CSCD 2024年第5期981-996,共16页
The boundary lubrication mechanism at the articulating surface of natural synovial joints has been the subject of much discussion in tribology.In this study,to elucidate the lubricating function of the superficial are... The boundary lubrication mechanism at the articulating surface of natural synovial joints has been the subject of much discussion in tribology.In this study,to elucidate the lubricating function of the superficial area of articular cartilage and synovial fluid(SF),cartilage specimens were processed with four different treatments:gentle and severe washing with detergent,incubation in NaCl solution,and trypsin digestion to selectively remove certain constituents from the cartilage surface.Subsequently,the frictional characteristics were examined in phosphate-buffered saline(PBS)and SF against glass.Angularly reciprocating sliding tests with a spherical glass probe and square articular cartilage specimens were performed at low contact loads in the mN range to extract the frictional behavior in the superficial area of the cartilage specimens.Meanwhile,the cartilage surface was observed to confirm the effects of treatments on the morphology of the cartilage surface using a fluorescence microscope and water-immersion methods.The coefficient of friction(COF)of the prepared cartilage specimens was varied from 0.05 to over 0.3 in PBS.However,a certain group of cartilage specimens exhibited a low COF of less than 0.1 with limited variation.For the low COF group of specimens,all four treatments increased the COF in PBS to different extents,and fluorescence microscopy revealed that the integrity of the cartilage surface was deteriorated by treatments.This means that the intact cartilage surface had lubricating constituents to maintain low friction,and the removal of such constituents resulted in the loss of the intrinsic boundary lubricity of the cartilage surface.The variation in the COF of the cartilage specimens was suppressed in SF because it had a clear boundary lubrication effect on the cartilage surface.The lubricating effect of SF could be confirmed even after degenerative treatment. 展开更多
关键词 articular cartilage synovial fluid the uppermost superficial layer boundary lubrication
原文传递
Improving superficial microstructure and properties of the laser-processed ultrathin kerf in Ti-6Al-4V alloy by water-jet guiding 被引量:1
2
作者 Yang Chao Yuezhuan Liu +10 位作者 Zifa Xu Weixin Xie Li Zhang Wentai Ouyang Haichen Wu Zebin Pan Junke Jiao Shujun Li Guangyi Zhang Wenwu Zhang Liyuan Sheng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第25期32-53,共22页
In the present research,the gas-assisted laser(GAL)and water-jet guided laser(WGL)processing technologies were applied to machine the ultrathin kerf in the wrought Ti-6Al-4V alloy.The microstructure,microhardness,and ... In the present research,the gas-assisted laser(GAL)and water-jet guided laser(WGL)processing technologies were applied to machine the ultrathin kerf in the wrought Ti-6Al-4V alloy.The microstructure,microhardness,and wear properties of the superficial layer were investigated.The results reveal that the GAL processing could machine the kerf with a high depth-to-width ratio of 12–15,but the increased processing times enhance the depth little.Due to the oxygen entrainment and relatively low heat and mass transferring efficiency,the assisted gas promotes the formation of a scaled recast layer containingβ-Ti phase and oxides,which increases the roughness to 20μm.The WGL processed kerf has a low depth-to-width ratio with a value of 1.9–2.5 and the depth could be increased by increasing the WGL processing times.With the assistance of the water jet,the remelted debris and heat could be eliminated immediately,which restrains the formation of the recast layer and heat-affected zone.The ultrathin oxide outer layer with hundreds of nanometers and ultrafineα-Ti grain inner layer are formed on the surface,which decreases the roughness to 12μm.Compared with the as-received Ti-6Al-4V alloy,the microhardness of GAL processed kerf surface is increased to 382.8 HV accompanied by residual tensile stress,while the microhardness of WGL processed kerf surface is increased to 481.6 HV accompanying with residual compressive stress.In addition,the GAL processing increases the wear rate at room temperature but decreases the wear rate at high temperatures.Comparatively,the WGL processing decreases the wear rate at room and high temperatures,simultaneously.Such wear behaviors could be ascribed to their different superficial microstructures and phase constituents. 展开更多
关键词 Ti-6Al-4V alloy Water-jet guided laser processing superficial layer Microstructure Wear properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部