The 3 P F2 superfluidity of neutron and proton is investigated in isospin-asymmetric nuclear matter within the Brueckner-Hartree-Fock approach and the BCS theory by adopting the Argonne V14 and the Argonne V18 nucleon...The 3 P F2 superfluidity of neutron and proton is investigated in isospin-asymmetric nuclear matter within the Brueckner-Hartree-Fock approach and the BCS theory by adopting the Argonne V14 and the Argonne V18 nucleonnucleon interactions. We find that pairing gaps in the 3PF2 channel predicted by adopting the AV14 interaction are much larger than those by the AV18 interaction. As the isospin-asymmetry increases, the neutron 3 pF2 superfluidity is found to increase rapidly, whereas the proton one turns out to decrease and may even vanish at high enough asymmetries. As a consequence, the neutron 3pF2 superfluidity is much stronger than the proton one at high asymmetries and it predominates over the proton one in dense neutron-rich matter.展开更多
We investigate the ^3PF2 neutron superfluidity in H-stable neutron star matter and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V18 potential supplemented with a ...We investigate the ^3PF2 neutron superfluidity in H-stable neutron star matter and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the threebody force effect on the ^3PF2 neutron pairing gap. It is found that the three-body force effect is to enhance remarkably the ^3PF2 neutron superfluidity in neutron star matter and neutron stars.展开更多
The Institute of Physics, Chinese Academy of Sciences, is in charge of the construction of the Synergetic Extreme Condition User Facility (SECUF) in Huairou, Beijing. The SECUF is a comprehensive facility focused on...The Institute of Physics, Chinese Academy of Sciences, is in charge of the construction of the Synergetic Extreme Condition User Facility (SECUF) in Huairou, Beijing. The SECUF is a comprehensive facility focused on providing extreme physical conditions for scientific research, including an ultralow temperature, ultrahigh pressure, ultrahigh magnetic field, and ultrafast laser. The ultralow temperature will be realized by the sub-millikelvin (sub-mK) station, whose main component is an adiabatic nuclear demagnetization refrigerator (ANDR). The refrigerator is designed to have a base temperature below 1 mK and a magnetic field up to 16 T for experiments, as well as a characteristic parameter of B/T ≥-104 T/K. In this review, we introduce adiabatic nuclear demagnetization refrigeration, thermometry from 10 mK to sub-mK, the properties and parameters of the ANDR of the SECUF, and related prospective research topics.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10575119, 10875151, 10811130077, and 10811130560the Knowledge Innovation Project (KJCX3-SYW-N2) of the Chinese Academy of Sciences+2 种基金the Major State Basic Research Developing Program of China under Grant No. 2007CB815004the CAS/SAFEA International Partnership Program for Creative Research Teams(CXTD-J2005-1) of Chinese Academy of Sciencesthe Asia-Link project (CN/ASIA-LINK/008(94791)) of the European Commission
文摘The 3 P F2 superfluidity of neutron and proton is investigated in isospin-asymmetric nuclear matter within the Brueckner-Hartree-Fock approach and the BCS theory by adopting the Argonne V14 and the Argonne V18 nucleonnucleon interactions. We find that pairing gaps in the 3PF2 channel predicted by adopting the AV14 interaction are much larger than those by the AV18 interaction. As the isospin-asymmetry increases, the neutron 3 pF2 superfluidity is found to increase rapidly, whereas the proton one turns out to decrease and may even vanish at high enough asymmetries. As a consequence, the neutron 3pF2 superfluidity is much stronger than the proton one at high asymmetries and it predominates over the proton one in dense neutron-rich matter.
基金supported in part by the National Natural Science Foundation of China (Grant Nos 10575119 and 10775061)the Knowledge Innovation Project (Grant No KJCX3-SYW-N2) of Chinese Academy of Sciences+2 种基金the Major State Basic Research Developing Program of China (Grant No 2007CB815004)CAS/SAFEA International Partnership Program for Creative Research Teams(Grant No CXTD-J2005-1)the Asia-Link project (Grant No CN/ASIA-LINK/008(94791)) of the European Commission
文摘We investigate the ^3PF2 neutron superfluidity in H-stable neutron star matter and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the threebody force effect on the ^3PF2 neutron pairing gap. It is found that the three-body force effect is to enhance remarkably the ^3PF2 neutron superfluidity in neutron star matter and neutron stars.
基金Project supported by the National Basic Research Program of China(Grant Nos.2016YFA0300601,2015CB921402,2011CB921702,and 2009CB929101)the National Natural Science Foundation of China(Grant Nos.11527806,91221203,11174340,11174357,and 91421303)+1 种基金the Strategic Priority Research Program B of the Chinese Academy of Sciences(Grant No.XDB07010100)the support from Hundreds Talent Program,Chinese Academy of Sciences
文摘The Institute of Physics, Chinese Academy of Sciences, is in charge of the construction of the Synergetic Extreme Condition User Facility (SECUF) in Huairou, Beijing. The SECUF is a comprehensive facility focused on providing extreme physical conditions for scientific research, including an ultralow temperature, ultrahigh pressure, ultrahigh magnetic field, and ultrafast laser. The ultralow temperature will be realized by the sub-millikelvin (sub-mK) station, whose main component is an adiabatic nuclear demagnetization refrigerator (ANDR). The refrigerator is designed to have a base temperature below 1 mK and a magnetic field up to 16 T for experiments, as well as a characteristic parameter of B/T ≥-104 T/K. In this review, we introduce adiabatic nuclear demagnetization refrigeration, thermometry from 10 mK to sub-mK, the properties and parameters of the ANDR of the SECUF, and related prospective research topics.