期刊文献+
共找到161篇文章
< 1 2 9 >
每页显示 20 50 100
Genesis of the Jiajika superlarge lithium deposit,Sichuan,China:constraints from He–Ar–H–O isotopes
1
作者 Tao Liu Hai Wang +6 位作者 Shihong Tian Denghong Wang Xianfang Li Xiaofang Fu Xuefeng Hao Yujie Zhang Kejun Hou 《Acta Geochimica》 EI CAS CSCD 2023年第3期517-534,共18页
The Jiajika granitic-and pegmatite-type lithium deposit,which is in the Songpan-Garze Orogenic Belt in western Sichuan Province,China,is the largest in Asia.Previous studies have examined the geochemistry and mineralo... The Jiajika granitic-and pegmatite-type lithium deposit,which is in the Songpan-Garze Orogenic Belt in western Sichuan Province,China,is the largest in Asia.Previous studies have examined the geochemistry and mineralogy of pegmatites and their parental source rocks to determine the genesis of the deposit.However,the evolution of magmatic-hydrothermal fluids has received limited attention.We analyzed He–Ar–H–O isotopes to decipher the ore-fluid nature and identify the contribution of fluids to mineralization in the late stage of crystallization differentiation.In the Jiajika ore field,two-mica granites,pegmatites(including common pegmatites and spodumene pegmatites),metasandstones,and schists are the dominant rock types exposed.Common pegmatites derived from early differentiation of the two-mica granitic magmas before they evolved into spodumene pegmatites during the late stage of the magmatic evolution.Common pegmatites have~3He/~4He ratios that vary from 0.18 to 4.68 Ra(mean1.62 Ra),and their~(40)Ar/~(36)Ar ratios range from 426.70 to 1408.06(mean 761.81);spodumene pegmatites have~3He/~4He ratios that vary from 0.18 to 2.66 Ra(mean 0.87Ra)and their~(40)Ar/~(36)Ar ratios range from 402.13 to 1907.34(mean 801.65).These data indicate that the hydrothermal fluids were shown a mixture of crust-and mantle-derived materials,and the proportion of crustderived materials in spodumene pegmatites increases significantly in the late stage of the magmatic evolution.Theδ~(18)OH_(2)O–VSMOWvalues of common pegmatites range from 6.2‰to 10.9‰,with a mean value of 8.6‰,andδDV–SMOWvalues vary from-110‰to-72‰,with a mean o f-85‰.Theδ~(18)OH_(2)O–VSMOWvalues of spodumene pegmatites range from 5.3‰to 13.2‰,with a mean of 9.1‰,andδDV–SMOWvalues vary from-115‰to-77‰,with a mean of-91‰.These data suggest that the ore-forming fluids came from primary magmatic water gradually mixing with more meteoric water in the late stage of the magmatic evolution.Based on the He–Ar–H–O and other existing data,we propose that the oreforming metals are mainly derived from the upper continental crust with a minor contribution from the mantle,and the fluid exsolution and addition of meteoric water during the formation of pegmatite contributed to the formation of the Jiajika superlarge lithium deposit. 展开更多
关键词 He–Ar–H–O isotopes Magmatic-hydrothermal fluids Common pegmatites Spodumene pegmatites Jiajika superlarge lithium deposit SICHUAN
下载PDF
Control of Deep Tectonics on the Superlarge Deposits in China 被引量:26
2
作者 YANGLiqiang DENGJun +4 位作者 WANGJianguo WEIYanguang WANGJianping WANGQinfei LUPing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第2期358-367,共10页
Seventy-three large-superlarge deposits in China were formed in 4 metallogenic epochs, and located in 6 metallogenic domains. By combing their time-space distribution and the relevant data of crustal thickness, we dis... Seventy-three large-superlarge deposits in China were formed in 4 metallogenic epochs, and located in 6 metallogenic domains. By combing their time-space distribution and the relevant data of crustal thickness, we discuss the control conditions of deep tectonics on superlarge deposits. The various spatial variation of the crustal thickness where deposits locate is closely related to their different tectonic setting. The crustal thickness of the region where deposits are in the Precatnbrian metallogenic epoch is 37.1 km and shows double-peak distribution, which is related to the different tectonic-mineralization processes in the Tarim-North China and Yangtze metallogenic domains. The crustal thickness of the region where deposits are in the Paleoproterozoic metallogenic epoch is 43.4 km and shows normal distribution, which is the result of 'pure' mineralization setting. The crustal thickness of the region where deposits are in the Late Palaeozoic-Early Mesozoic metallogenic epoch is about 41.2 km and shows multi-peak distribution, which can be related with dispersing distribution in the metallogenic domain of these superlarge deposits. The crustal thickness of the region where deposits are in the post-Indosinian metallogenic epoch is 37.3 km, and shows skew distribution, which resulted from different tectonic settings in eastern and western China. 展开更多
关键词 superlarge deposits deep tectonics metallogenic dynamics China
下载PDF
Dating of the Dachang Superlarge Tin-polymetallic Deposit in Guangxi and Its Implication for the Genesis of the No. 100 Orebody 被引量:25
3
作者 WANGDenghong CHENYuchuan +5 位作者 CHENWen SANGHaiqing LIHuaqin LUYuanfa CHENKaili LINZhimao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第2期452-458,共7页
The Dachang superlarge Sn-polymetal deposit in Guangxi, China, is one of the largest tin deposit all over the world. However, this deposit has long been in debate as to its origin. One of the opinions is that the Dach... The Dachang superlarge Sn-polymetal deposit in Guangxi, China, is one of the largest tin deposit all over the world. However, this deposit has long been in debate as to its origin. One of the opinions is that the Dachang deposit was formed by replacement of hydrothermal solution originating from Yanshanian granites, and the other is that this deposit was formed by submarine exhalation in the Devonian. This paper presents some new isotopic geochronology data obtained with the 40Ar-39Ar method for quartz and sanidine from massive ore in the No. 91 and No. 100 orebodies. Analytic results show that the No. 91 orebody was formed at 94.52±0.33 Ma (the plateau age obtained with the 40Ar-39Ar method for quartz) or 91.4±2.9 Ma (the plateau age obtained with the 40Ar-39Ar method for feldspar), while the No. 100 orebody was formed at 94.56±0.45 Ma (the plateau age obtained with the 40Ar-39Ar method for quartz), suggesting that both the No. 91 and the No. 100 orebodies were formed at the Late Yanshanian instead of the Devonian. The No. 100 orebody might be formed by filling of ore materials into caves in Devonian reef limestone. Because the ore-bearing solution released its pressure and lowered its temperature suddenly in a cave environment, ore minerals were formed concentratedly while water and other materials such as CO2 evaporated quickly, resulting less alteration of host rocks. 展开更多
关键词 superlarge Sn-polymetal deposit GUANGXI DACHANG GEOCHRONOLOGY pressure release and evaporation
下载PDF
Lincang Superlarge Germanium Deposit in Yunnan Province,China: Sedimentation,Diagenesis,Hydrothermal Process and Mineralization 被引量:3
4
作者 Zhuang Hanping Lu Jialan Fu Jiamo Liu Jinzhong Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 《Journal of Earth Science》 SCIE CAS CSCD 1998年第2期37-44,共8页
The mineralization is related closely to sedimentation, diagenesis and hydrothermal processes. In this paper, investigations are carried out on coal occurrence, maceral composition, inorganic minerals, trace elements ... The mineralization is related closely to sedimentation, diagenesis and hydrothermal processes. In this paper, investigations are carried out on coal occurrence, maceral composition, inorganic minerals, trace elements and huminite reflectance. It is concluded that the source of Lincang superlarge deposit is mainly the muscovite granite in the west edge of the basin. During sedimentation, Ge (germanium) was leached out and entered the basin. Ge was adsorbed by lower organism and humic substances in water. Lincang lignite underwent three thermal processes: peatification, early diagenesis and hydrothermal transformation. During peatification, Ge was adsorbed or complexed by humic colloids. During early diagenesis, the Ge associated with humic acids was hard to mobilize or transport. Most of Ge entered the structure of huminite while a small amount of Ge was associated with residual humic acids as complex or humate. During hydrothermal transformation, the heated natural water or deep fluid from basement encountered the coal layer within tectonic weak zone. SO 2- 4 was reduced by coal organic matter. Pyrite and calcite formed. Hydrothermal process did not contribute significantly to mineralization. 展开更多
关键词 Lincang superlarge germanium deposit SEDIMENTATION DIAGENESIS hydrothermal process mineralization.
下载PDF
New Recognized Intellect for Prospecting Large-superlarge Mineral Deposits 被引量:3
5
作者 PEI Rongfu MEI Yanxiong +1 位作者 WANG Haolin QU Hongying 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第3期539-546,共8页
Based on the data base of 1285 mineral deposits of 22 commodities in 121 countries of 6 continents of the world, the authors use the linear trend analysis for their reserves to determine the cut-off limited order of r... Based on the data base of 1285 mineral deposits of 22 commodities in 121 countries of 6 continents of the world, the authors use the linear trend analysis for their reserves to determine the cut-off limited order of reserves to select 36 exceptional superlarge (as peak mineral), 95 superlarge and 314 large deposits as new recognized intellect for their quantitative change. We have projected above 445 large-superlarge deposits on (1:5 M) global tectonic background map and divided 4 metallogenic domains, 21 metallogenic belts. Global metallogeny of large-superlarge deposits are: unity by endogenic, exogenic metamorphic and epigenetic in origin; speciality in different metallogenic domains and belts; preferentiality to ore-forming elements of Cu, Au, Fe, Ag, Cr, Mn, Zn, Pb, Sb, Hg, to continental margins or plate convergent belts, to Intra-continental tectono-magmatic complex belts and Large ductile shear zones; abnormality by the global oxyatmversion (excess oxygen atmospheric event) in Archean, redoxyatmversion (lack oxygen atmospheric event) in Proterozoic-Paleozoic, and tectonosphere thermal erosion (great amount of tectonic magmatic event) in Mesozoic-Cenozoic. 展开更多
关键词 new recognized intellect large-superlarge deposits metallogenic unity SPECIALITY preferentiality abnormality
下载PDF
New Discovery of Shizhushan Superlarge Wollastonite Deposit in Xinyu City, Jiangxi Province 被引量:1
6
作者 HU Zhenghua WANG Xlanguang +5 位作者 CHEN Guohua LI Yanhong ZHAN Tlanwe CHEN Sibao LIU Shaohua CHEN Xuguang 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第4期1670-1671,共2页
Objective The Mengshan area of the Xinyu City, Jiangxi Province is an important wollastonite production base in China. As early as the 90s of the 20th century, more than ten medium to small-sized wollastonite deposi... Objective The Mengshan area of the Xinyu City, Jiangxi Province is an important wollastonite production base in China. As early as the 90s of the 20th century, more than ten medium to small-sized wollastonite deposits, such as the Yueguangshan and Caofangmiao Deposits were discovered in the outer contact zone of the Mengshan rock mass. After that, no more progress was achieved in wollastonite prospection. In 2016, the project funded by the Geological Prospecting Fund of Jiangxi Province made significant breakthroughs in the "General Survey of the Shizhushan Wollastonite Ore in the Yushui District and Zhangmuqiao Wollastonite Ore in Shanggao County, Xinyu City, Jiangxi Province" in the Mengshan area. The new discovered Shizhushan Wollastonite Deposit has a scale of 50 million tons and its resources scale far exceeds that of the Seeleys Bay Wollastonite Deposit discovered in Canada. 展开更多
关键词 New Discovery of Shizhushan superlarge Wollastonite deposit in Xinyu City Jiangxi Province
下载PDF
FORMATION CONDITIONS AND GENESIS OF THE BASHAN SUPERLARGE BARIUM DEPOSIT, CHENGKOU COUNTY, SICHUAN, CHINA 被引量:1
7
《Geotectonica et Metallogenia》 1994年第Z2期110-111,共2页
关键词 SE FORMATION CONDITIONS AND GENESIS OF THE BASHAN superlarge BARIUM deposit SICHUAN CHENGKOU COUNTY CHINA
下载PDF
CONCENTRATION OF ORE-FORMING SOLUTIONS AS A FACTOR OF FORMATION OF SUPERLARGE DEPOSITS 被引量:1
8
作者 BORISENKO A.S +1 位作者 OBOLENSKY A.A 《Geotectonica et Metallogenia》 1994年第Z2期1-4,共4页
关键词 Ag Hg CONCENTRATION OF ORE-FORMING SOLUTIONS AS A FACTOR OF FORMATION OF superlarge depositS Pb Ni
下载PDF
On Geophysical Background of Superlarge Deposits in the Chinese Continent
9
作者 PENG Cong PEI Rongfu GAO Rui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1999年第2期193-200,共8页
Based on the study of tens of geophysical profiles (seismic, geothermal flow and magnetotelluric sounding profiles) and 3-D shear wave velocity structures of the Chinese continent and its neighbouring regions, this pa... Based on the study of tens of geophysical profiles (seismic, geothermal flow and magnetotelluric sounding profiles) and 3-D shear wave velocity structures of the Chinese continent and its neighbouring regions, this paper describes the 3-D crustal and upper mantle structures and discusses briefly the deep geophysical background of superlarge ore deposits in the Chinese continent. Superlarge deposits are usually very few in number, but they are distributed still in certain forms such as “point”, “zone” and “area”. Most of the large-, medium- and small-sized deposits occur near the margins of different tectonic units; while the superlarge endogenic polymetallic deposits occur mostly in thinned mantle lithosphere, uplifts of the asthenosphere (vertical low-velocity zones) and the transformation zones of lateral inhomogeneity (weak zones) in the upper mantle. The superlarge endogenic polymetallic deposits are almost unevenly distributed in three major ore zones in China, corresponding to the boundaries of inhomogeneous regions in the asthenosphere. 展开更多
关键词 Chinese continent superlarge deposits mantle lithosphere ASTHENOSPHERE
下载PDF
GEODYNAMICS OF SUPERLARGE DEPOSITS IN CHINSES YUNNAN-GUIZHOU-GUANGXI ON THE EASTERN MARGIN OF THE QINGZANG PLEAUTAN
10
作者 Fang Weixuan, Hu Ruizhong, Su Wenchao 《地学前缘》 EI CAS CSCD 2000年第S1期413-415,共3页
Interest in the ore\|forming histories of basins has grown rapid since 1960 and is now intensive. The main reason behind the acceleration is the increasing awareness that the natural processes responsible for generati... Interest in the ore\|forming histories of basins has grown rapid since 1960 and is now intensive. The main reason behind the acceleration is the increasing awareness that the natural processes responsible for generating metal deposits in the sedimentary basin from the source rocks of the beneath the basin and intensively hydrothermal activity in the basin. Observations made in different continental margin basin systems and superlarge deposits in Chinese Yunnan\|Guizhou\|Guangxi Province on the eastern margin of the Qingzang (Himalaya—Karakoram—Tibet) were investigated in terms of geodynamics of basin formation. Geotectonically, the area is situated in the conjoint between the Tethys—Himalaya and the Marginal\|Pacific tectonic domain, characterized by very complex geological structure, typical basin\|mountain tectonics, abundant Superlarge deposits. 展开更多
关键词 superlarge deposits geodynamics EXTENSIONAL tectonics sedimentary basin mantle plume extension of LITHOSPHERE Chinese Yunnan\|Gui zhou\|Guangxi Province
下载PDF
Geology and Genesis of the Superlarge Jinchang Gold Deposit,NE China
11
作者 JIA Guozhi CHEN Jinrong +5 位作者 YANG Zhaoguang BIAN Hongye WANG Yangzhong LIANG Haijun JIN Tonghe LI Zhenhui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第4期750-761,共12页
The superlarge Jinchang gold deposit is located in the joint area between the Taipingling uplift and the Laoheishan depression of the Xingkai Block in both eastern Jilin and eastern Heilongjiang Province. Wall rocks o... The superlarge Jinchang gold deposit is located in the joint area between the Taipingling uplift and the Laoheishan depression of the Xingkai Block in both eastern Jilin and eastern Heilongjiang Province. Wall rocks of the gold deposits are the Neoproterozoic Huangsong Group of metamorphic rocks. Yanshanian magmatism in this region can be divided into 5 phases, the diorite, the graphic granite, the granite, the granite porphyry and the diorite porphyrite, which resulted in the magmatic domes and cryptoexplosive breecia chimney followed by large-scale hydrothermal alteration. Gold mineralization is closely related to the fourth and fifth phase of magmatism. According to the occurrences, gold ores can be subdivided into auriferous pyritized quartz vein, auriferous quartz-pyrite vein, auriferous polymetailic sulfide quartz vein and auriferous pyritized calcite vein. The ages of the gold deposit are ranging from 122.53 to 119.40 Ma. The ore bodies were controlled by a uniform tectono-magmatic hydrothermal alteration system that the ore-forming materials were deep derived from and the ore-forming fluids were dominated by magmatic waters with addition of some atmospheric water in the later phase of mineralization. Gold mineralization took place in an environment of medium to high temperatures and medium pressures. Ore-forming fluids were the K^+-Na^+-Ca^2+-Cl^--SO4^2- type and characterized by medium salinity or a slightly higher, weak alkaline and weak reductive. Au in the ore-forming fluids was transported as complexes of [Au (HS)2]^-, [AuCl2]^-, [Au(CO2)]^- and [Au(HCO3)2]^-. Along with the decline of temperatures and pressures, the ore-forming fluids varied from acidic to weak acidic and then to weak alkaline, which resulted in the dissociation of the complex and finally the precipitation of the gold. 展开更多
关键词 magmatic dome cryptoexplosive breccia pipe ring and radial faults gold deposit superlarge JINCHANG Taipingling Heilongjiang
下载PDF
Reworking Intensity—A Key Factor Leading to the Formation of Superlarge Gold Deposits in Greenstone Belts and Metamorphosed Microclastic Rocks in China
12
作者 王秀璋 陆德复 +4 位作者 程景平 应汉龙 梁华英 夏萍 单强 《Chinese Journal Of Geochemistry》 EI CAS 1999年第4期289-297,共9页
The greenstone belt and metamorphosed microclastic rock\|type superlarge gold deposits in China are hosted in metamorphic rocks and later intrusive bodies. Sedimentation, regional metamorphism and mineralization contr... The greenstone belt and metamorphosed microclastic rock\|type superlarge gold deposits in China are hosted in metamorphic rocks and later intrusive bodies. Sedimentation, regional metamorphism and mineralization contributed a lot to the formation of the deposits, so did remelting magmatic process to some deposits, but the deposits were finally formed by reworking processes. The key factor leading to the formation of superlarge gold deposits is the reworking intensity, which for superlarge gold deposits is reflected by the large\|scale reworked source rocks and even ore materials of various sources, strongly oxidized ore\|forming fluids with a long and repeated active history and stable geothermal heat current. The factor which decides the reworking intensity is the network consisting of structures of different classes. 展开更多
关键词 金矿床 绿玉 变质岩 成矿流体 地热
下载PDF
Assessment of Prospecting Potentiality for Superlarge Continental Volcanic Rock-Type Uranium Deposits in China
13
作者 陈贵华 陈名佐 邸瑞姞 《Chinese Journal Of Geochemistry》 EI CAS 1999年第4期350-360,共11页
The superlarge continental volcanic rock\|type uranium deposits, which were discovered abroad long ago, have not yet been reported up to now in China. This is an important problem that needs to be urgently solved by u... The superlarge continental volcanic rock\|type uranium deposits, which were discovered abroad long ago, have not yet been reported up to now in China. This is an important problem that needs to be urgently solved by uranium geologists at present. In this paper, on the basis of analyzing the metallogenic settings and geological conditions of the superlarge continental volcanic rock\|type uranium deposits discovered in the world along with the metallogenic characteristics of those of the same type in China, the space\|time distribution patterns of continental volcanics and the metallogenic potential of main tectono\|volcanic belts in China are discussed, and a synthetic conclusion has been drawn that there is a possibility to discover the superlarge continental volcanic rock\|type uranium deposits in China. Moreover, it is evidenced that the Ganhang, Nanling, Yanliao, Da Hinggan Ling and other tectono\|volcanic belts possess favorable geological conditions for the formation of ssuperlarge ore deposits of the continental volcanic rock type. The intersecting and overlapping locations of the aforementioned main belts with other tectono\|volcanic (\|intrusive) belts are the most potential areas where the superlarge continental volcanic rock\|type uranium deposits would be found. 展开更多
关键词 火山岩 超大型铀矿床 金属矿床 地质条件 成矿作用
下载PDF
POLYGENETIC COMPOUND ORE DEPOSITS AND SUPERLARGE ORE DEPOSITS
14
《Geotectonica et Metallogenia》 1994年第Z2期10-11,共2页
关键词 ORE POLYGENETIC COMPOUND ORE depositS AND superlarge ORE depositS
下载PDF
Ore-Search Perspective for Superlarge Gold Deposits in the Jiaolai Basin of the Jiaodong Gold Metallogenetic Domain
15
作者 张竹如 陈世桢 唐波 《Chinese Journal Of Geochemistry》 EI CAS 2000年第4期289-300,共12页
There are three types of gold deposits in the Jiaodong gold metallogenetic domain. The strata\|bound gold deposits are a new type, which occur in a hydrocarbon\|gold double\|source bed enriched in gold (Au 174 ng/g) a... There are three types of gold deposits in the Jiaodong gold metallogenetic domain. The strata\|bound gold deposits are a new type, which occur in a hydrocarbon\|gold double\|source bed enriched in gold (Au 174 ng/g) and organic carbon (0.007%-4.225%). At diagenetic and hydrothermal stages water and oil were simultaneously activated and the strata\|bound gold deposits were formed from interactions between water, oil and rocks. In the late Yanshanian period, gold orebodies were enriched and enlarged in response to tectonomagmatism and action of complex ore\|forming hydrothermal solutions. As a result, it is highly expected to find suparlarge gold deposits and the Yanzi area is expected to be a perspective target area. 展开更多
关键词 金矿床 成矿作用 成矿带 水-油-岩反应 山东 勘探 地质构造
下载PDF
Theoretical Modelling of Water-Rock δD-δ^(18)OIsotopic Exchange System and Source of Ore-Forming Fluid:A Case Study on Jinduicheng Superlarge-Scale Molybdenum Deposit,Central China
16
作者 孙晓明 任启江 +2 位作者 杨荣勇 徐兆文 刘孝善 《Chinese Journal Of Geochemistry》 EI CAS 1998年第3期284-290,共7页
Based on the theoretical modelling of water-rock δD-δ18O isotopic exchange process,the evolution and sources of ore-forming fluid in four metallogenic epochs of the Jinduicheng su-perlarge-scale porphyry-type molybd... Based on the theoretical modelling of water-rock δD-δ18O isotopic exchange process,the evolution and sources of ore-forming fluid in four metallogenic epochs of the Jinduicheng su-perlarge-scale porphyry-type molybdenum deposit were investigated. It was revealed that in thepre-metallogenic and early-metallogenic epehs, the ore-forming fluid was a residual fluid derived from magmatic water-wall rock interaction at middle to high temperatures (T = 250 -500℃) and lower W/R ratios (0. 1 > = W/R >0.001 ), while in the metallogenic and Post-metallogenic epochs, the ore-forming nuid was a residual fluid derived from meteoric water-wallrock interaction at midd1e to lower temperatures (T = 150 - 310℃ ) and relatively high W/Rratios (0. 5 >W/R≥0.1 ). The meteoric water played an important role in molybdenum min-eralization, and at the main metallogenic epoch the W/R ratio reached its maximum value. 展开更多
关键词 钼矿床 水岩反应 氧同位素 成矿流体 华中地区
下载PDF
Magmatic-Hydrothermal Superlarge Metallogenic Systems——A Case Study of the Nannihu Ore Field 被引量:11
17
作者 王长明 成秋明 +2 位作者 张寿庭 邓军 谢淑云 《Journal of China University of Geosciences》 SCIE CSCD 2008年第4期391-403,共13页
Located in the Qinling (秦岭) molybdenum metallogenic belt on the southern margin of North China craton, the Nannihu (南泥湖) molybdenum (-tungsten) ore field, consisting of the Nannihu, Sandaozhuang (三道幢),... Located in the Qinling (秦岭) molybdenum metallogenic belt on the southern margin of North China craton, the Nannihu (南泥湖) molybdenum (-tungsten) ore field, consisting of the Nannihu, Sandaozhuang (三道幢), and Shangfang (上房) deposits, represents a superlarge skarn-porphyry molybdenum (-tungsten) accumulation. Outside the ore field, there are some hydrothermal lead-zinc-silver deposits found in recent years, for example, the Lengshuibeigou (冷水北沟), Yindonggou (银涧沟), Yangshuwa (杨树凹), and Yinhegou (银河沟) deposits. Ore-forming fluid geochemistry indicates that these deposits belong to the same metallogenic system. The hydrothermal solutions were mainly derived from primary magmatic water in the early stage and from the mixture of the primary magmatic water and meteoric water in the later stage, with an obvious decreasing tendency in temperature, salinity and gas-liquid ratio of fluid inclusions. Sulfur and lead isotope data show that the ore-forming substances and related porphyries were mainly derived from the lower crust, and a hidden magmatic chamber is indicated by aeromagnetic anomaly and drill hole data indicate that the Nannihu granite body extends to being larger and larger with depth increasing. The large-scale mineralization was the consequence of lithospheric extension during the late stage of the tectonic regime when the main compressional stress changed from NS-trending to EW-trending. 展开更多
关键词 magmatic-hydrothermal metallogenic system superlarge deposit ore-forming fluid dynamic process Nannihu ore field
下载PDF
^(40)Ar/^(39)Ar Dating of the Shaxi Porphyry Cu-Au Deposit in the Southern Tan-Lu Fault Zone, Anhui Province 被引量:6
18
作者 YANG Xiaoyong ZHENG Yongfei +2 位作者 XIAO Yilin DU Jianguo SUN Weidong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第3期477-487,共11页
Four samples of plagioclase and biotite from the Shaxi porphyry in the lower part of the Yangtze metallogenic belt were analyzed for age determination with the ^40 Ar/^39Ar method. The results yield reproducible ages ... Four samples of plagioclase and biotite from the Shaxi porphyry in the lower part of the Yangtze metallogenic belt were analyzed for age determination with the ^40 Ar/^39Ar method. The results yield reproducible ages of 126 Ma to 135 Ma with a high level of confidence according to the agreement between isochron and plateau ages. The four Ar-Ar ages are relatively consistent within the analytical error. These ages are also consistent with, but more precise than, previous K-Ar and Rb-Sr ages and thus provide better constraints on the time of porphyry formation and associated Cu-Au mineralization along the middle to lower part of the Yangtze metallogenic belt. The ages of 126 to 135 Ma are interpreted to represent the intrusive time of the Shaxi porphyry, so that the Cu-Au mineralization should have occurred later due to the post-magmatic hydrothermal event. 展开更多
关键词 Shaxi porphyry-type cu-au deposit ^40 Ar/^39 Ar dating Yangtze metallogenic belt Tancheng -Lujiang fault belt East China
下载PDF
Geological, Alteration and Mineralization Characteristics of Ali Javad Porphyry Cu-Au Deposit, Arasbaran Zone, NW Iran
19
作者 Behzad Hajalilou Mehraj Aghazadeh 《Open Journal of Geology》 2016年第8期859-874,共17页
Ali Javad porphyry Cu-Au deposit is located 20 Km north of Ahar city in Arasbaran metallogenic zone which is considered as a part of Alp-Himalayan mineralization belt. Magmatism in this area began in Late Cretaceous, ... Ali Javad porphyry Cu-Au deposit is located 20 Km north of Ahar city in Arasbaran metallogenic zone which is considered as a part of Alp-Himalayan mineralization belt. Magmatism in this area began in Late Cretaceous, followed by extensive magmatism in Cenozoic and Quaternary periods. Porphyry type mineralization developed in Ali Javad quartz monzonitic porphyry stock and Eocene pyroclastic and volcanic country rocks. Ali Javad porphyry intrusion has shoshonitic nature and shows characteristics of volcanic arc granitoids that it is have been emplaced in a post-collision tectonic setting. Alteration zones at the deposit demonstrated zoning which is comparable with Lowel-Guilbert model proposed for quartz-monzonite type porphyry copper deposits. Phyllic, argillic, silicic and propylitic alteration zones were observed at the surface while potassic alteration zone could be observed at depth in drill core samples. Mineralization was recognized both as supergene and hypogene, the latter was as veins, veinlets and disseminations. Dominant hypogene minerals were chalcopyrite, bornite, molybdenite, pyrite and magnetite while chalcocite, covellite and limonite were dominant supergene minerals. Four mineralization zones were observed in the deposit as leached, transitional, supergene and hypogene zones. Average grades were 0.75% for copper and 1.86 ppm for gold with 81.5 Mt proved reserve for copper and 37.8 Mt for gold. 展开更多
关键词 GEOLOGY ALTERATION Mineralization Ali Javad Porphyry cu-au deposit Iran
下载PDF
滇西兰坪金顶超大型铅锌矿床围岩微量元素地球化学特征及其意义
20
作者 朱志军 杨志娟 +1 位作者 严锦洁 王何均 《东华理工大学学报(自然科学版)》 CAS 北大核心 2024年第1期1-12,共12页
滇西兰坪盆地是三江成矿带的重要组成部分,金顶铅锌矿是区内重要的超大型矿床。为了查明金顶超大型铅锌矿床的成矿物质来源,对金顶矿区围岩样品进行微量元素地球化学分析。结果显示,稀土总量接近大陆上地壳的平均稀土元素总量值,轻稀土... 滇西兰坪盆地是三江成矿带的重要组成部分,金顶铅锌矿是区内重要的超大型矿床。为了查明金顶超大型铅锌矿床的成矿物质来源,对金顶矿区围岩样品进行微量元素地球化学分析。结果显示,稀土总量接近大陆上地壳的平均稀土元素总量值,轻稀土元素相对富集、重稀土元素相对亏损,呈明显的右倾型,具有显著的Eu负异常。微量元素特征显示Cu的平均含量为24.4×10^(-6),未发生明显富集迁移。Pb、Zn平均含量随矿体距离远近变化较大(Pb含量为2.9×10^(-6)~24.7×10^(-6),平均含量为13.1×10^(-6);Zn含量为8.8×10^(-6)~236.0×10^(-6),平均含量为76.6×10^(-6)),与矿体距离呈现出明显的相关性,距离矿体越近,含量越高。稀土元素特征及微量元素相关关系分析表明,矿区围岩古近纪云龙组地层不是提供成矿物质的矿源层。矿区石膏锶、硫同位素地球化学性质显示金顶矿区的石膏为晚三叠世三合洞组蒸发沉积型,且在适当的成矿温度条件下(150~300℃),石膏会发生热化学还原作用(TSR),为金属硫化物矿床提供硫源。 展开更多
关键词 兰坪盆地 金顶超大型铅锌矿 围岩 微量元素
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部