One-dimension InAlO3 (ZnO)m superlattice nanowires were successfully synthesized via chemical vapor deposition. Transmission electron microscopy measurements reveal that the nanowires have a periodic layered structu...One-dimension InAlO3 (ZnO)m superlattice nanowires were successfully synthesized via chemical vapor deposition. Transmission electron microscopy measurements reveal that the nanowires have a periodic layered structure along the (0001) direction. The photoluminescence properties of InAlO3(ZnO)m superlattice nanowires are studied for the first time. The near-band-edge emissions exhibit an obvious red shift due to the formation of the localized tail states. The two peaks centered at 3.348 eV and 3.299 eV indicate a lever phenomenon at the low-temperature region. A new luminescence mechanism is proposed, combined with the special energy band structure of InAlO3(ZnO)m.展开更多
基金Project supported by the Science Foundation for Distinguished Young Scholars of Heilongjiang Province,China (Grant No.JC200805)the Natural Science Foundation of Heilongjiang Province of China (Grant Nos.A2007-03,A200807,and F200828)the Personnel Bureau Project of Overseas Talent of Heilongjiang Province,China
文摘One-dimension InAlO3 (ZnO)m superlattice nanowires were successfully synthesized via chemical vapor deposition. Transmission electron microscopy measurements reveal that the nanowires have a periodic layered structure along the (0001) direction. The photoluminescence properties of InAlO3(ZnO)m superlattice nanowires are studied for the first time. The near-band-edge emissions exhibit an obvious red shift due to the formation of the localized tail states. The two peaks centered at 3.348 eV and 3.299 eV indicate a lever phenomenon at the low-temperature region. A new luminescence mechanism is proposed, combined with the special energy band structure of InAlO3(ZnO)m.