In this paper, we investigate whether it is possible to determine the neutrino mass hierarchy via a high-statistics and real-time observation of supernova neutrinos with short-time characteristics. The essential idea ...In this paper, we investigate whether it is possible to determine the neutrino mass hierarchy via a high-statistics and real-time observation of supernova neutrinos with short-time characteristics. The essential idea is to utilize distinct times-of-flight for different neutrino mass eigenstates from a core-collapse supernova to the Earth, which may significantly change the time distribution of neutrino events in the future huge water-Cherenkov and liquid-scintillator detectors. For illustration, we consider two different scenarios. The first case is the neutronization burst of emitted in the first tens of milliseconds of a core-collapse supernova, while the second case is the black hole formation during the accretion phase for which neutrino signals are expected to be abruptly terminated. In the latter scenario, it turns out only when the supernova is at a distance of a few Mpc and the fiducial mass of the detector is at the level of gigaton, might we be able to discriminate between normal and inverted neutrino mass hierarchies. In the former scenario, the probability for such a discrimination is even less due to a poor statistics.展开更多
Recent observations of young volcanism on the near-Earth terrestrial planets require a new understanding. Magmatic/volcanic episodes on Venus, Mars and Mercury, as well as on Earth’s Moon, are apparently contemporane...Recent observations of young volcanism on the near-Earth terrestrial planets require a new understanding. Magmatic/volcanic episodes on Venus, Mars and Mercury, as well as on Earth’s Moon, are apparently contemporaneous thermal events that accompanied increased magmatic/volcanic activity on Earth, following a 300-Myr cycle. A collateral galactic thermal source in the Milky Way appears to be needed that would predominantly affect the interior of the planets and, perhaps indirectly, Earth’s biosphere, compared to other galactic sources, such as intense cosmic rays or large, rocky bolides. The search for such a source leads to near-Earth supernovae, with their neutrino output, and to the question of whether those neutrinos could act as energy transmitters to heat up the body of Earth, and also enhance its short-term magmatic processes;for example, Cenozoic anorogenic volcanism. This observation challenges present assumptions and paradigms about Earth’s history, and requires the following reconsiderations: 1) the real origin of the end-Cretaceous mass extinction;2) the general radioactive age determinations of rocks;and 3) geodynamic modelling using additional, external heat sources.展开更多
The preference of the normal neutrino mass ordering from the recent cosmological constraint and the global fit of neutrino oscillation experiments does not seem like a wise choice at first glance since it obscures the...The preference of the normal neutrino mass ordering from the recent cosmological constraint and the global fit of neutrino oscillation experiments does not seem like a wise choice at first glance since it obscures the neutrinoless double beta decay and hence the Majorana nature of neutrinos.Contrary to this naive expectation,we point out that the actual situation is the opposite.The normal neutrino mass ordering opens the possibility of excluding the higher solar octant and simultaneously measuring the two Majorana CP phases in future 0ν2βexperiments.Especially,the funnel region will completely disappear if the solar mixing angle takes the higher octant.The combined precision measurement by the JUNO and Daya Bay experiments can significantly reduce the uncertainty in excluding the higher octant.With a typical O(meV)sensitivity on the effective mass|mee|,the neutrinoless double beta decay experiment can tell if the funnel region really exists and hence exclude the higher solar octant.With the sensitivity further improved to sub-meV,the two Majorana CP phases can be simultaneously determined.Thus,the normal neutrino mass ordering clearly shows phenomenological advantages over the inverted one.展开更多
The China Jinping Underground Laboratory(CJPL), which has the lowest cosmic-ray muon flux and the lowest reactor neutrino flux of any laboratory, is ideal to carry out low-energy neutrino experiments. With two detec...The China Jinping Underground Laboratory(CJPL), which has the lowest cosmic-ray muon flux and the lowest reactor neutrino flux of any laboratory, is ideal to carry out low-energy neutrino experiments. With two detectors and a total fiducial mass of 2000 tons for solar neutrino physics(equivalently, 3000 tons for geo-neutrino and supernova neutrino physics), the Jinping neutrino experiment will have the potential to identify the neutrinos from the CNO fusion cycles of the Sun, to cover the transition phase for the solar neutrino oscillation from vacuum to matter mixing, and to measure the geo-neutrino flux, including the Th/U ratio. These goals can be fulfilled with mature existing techniques. Efforts on increasing the target mass with multi-modular neutrino detectors and on developing the slow liquid scintillator will increase the Jinping discovery potential in the study of solar neutrinos,geo-neutrinos, supernova neutrinos, and dark matter.展开更多
We show how the traditional grid based method for finding neutrino oscillation parameters △m2 and tan2θ can be combined with an optimization technique, Differential Evolution (DE), to get a significant decrease in...We show how the traditional grid based method for finding neutrino oscillation parameters △m2 and tan2θ can be combined with an optimization technique, Differential Evolution (DE), to get a significant decrease in computer processing time required to obtain minimal chi-square (χ2) in four different regions of the parameter space. We demonstrate efficiency for the two-neutrinos case. For this, the χ2 function for neutrino oscillations is evaluated for grids with different density of points in standard allowed regions of the parameter space of △m2 and tan2θ using experimental and theoretical total event rates of ehlorine (Homestake), Gallex+GNO, SAGE, Superkamiokande, and SNO detectors. We find that using DE in combination with the grid based method with smail density of points can produce the results comparable with the one obtained using high density grid, in much lesser computation time.展开更多
基金Supported in part by the National Natural Science Foundation of China(11504276,11547310)(J.J.and Y.W.)the National Recruitment Program for Young Professionals and the CAS Center for Excellence in Particle Physics(S.Z.)
文摘In this paper, we investigate whether it is possible to determine the neutrino mass hierarchy via a high-statistics and real-time observation of supernova neutrinos with short-time characteristics. The essential idea is to utilize distinct times-of-flight for different neutrino mass eigenstates from a core-collapse supernova to the Earth, which may significantly change the time distribution of neutrino events in the future huge water-Cherenkov and liquid-scintillator detectors. For illustration, we consider two different scenarios. The first case is the neutronization burst of emitted in the first tens of milliseconds of a core-collapse supernova, while the second case is the black hole formation during the accretion phase for which neutrino signals are expected to be abruptly terminated. In the latter scenario, it turns out only when the supernova is at a distance of a few Mpc and the fiducial mass of the detector is at the level of gigaton, might we be able to discriminate between normal and inverted neutrino mass hierarchies. In the former scenario, the probability for such a discrimination is even less due to a poor statistics.
文摘Recent observations of young volcanism on the near-Earth terrestrial planets require a new understanding. Magmatic/volcanic episodes on Venus, Mars and Mercury, as well as on Earth’s Moon, are apparently contemporaneous thermal events that accompanied increased magmatic/volcanic activity on Earth, following a 300-Myr cycle. A collateral galactic thermal source in the Milky Way appears to be needed that would predominantly affect the interior of the planets and, perhaps indirectly, Earth’s biosphere, compared to other galactic sources, such as intense cosmic rays or large, rocky bolides. The search for such a source leads to near-Earth supernovae, with their neutrino output, and to the question of whether those neutrinos could act as energy transmitters to heat up the body of Earth, and also enhance its short-term magmatic processes;for example, Cenozoic anorogenic volcanism. This observation challenges present assumptions and paradigms about Earth’s history, and requires the following reconsiderations: 1) the real origin of the end-Cretaceous mass extinction;2) the general radioactive age determinations of rocks;and 3) geodynamic modelling using additional, external heat sources.
基金supported by JSPS KAKENHI(JP18K13536)the Double First Class start-up fund(WF220442604)provided by Shanghai Jiao Tong Universitysupported by the National Natural Science Foundation of China(11275101,11835005)。
文摘The preference of the normal neutrino mass ordering from the recent cosmological constraint and the global fit of neutrino oscillation experiments does not seem like a wise choice at first glance since it obscures the neutrinoless double beta decay and hence the Majorana nature of neutrinos.Contrary to this naive expectation,we point out that the actual situation is the opposite.The normal neutrino mass ordering opens the possibility of excluding the higher solar octant and simultaneously measuring the two Majorana CP phases in future 0ν2βexperiments.Especially,the funnel region will completely disappear if the solar mixing angle takes the higher octant.The combined precision measurement by the JUNO and Daya Bay experiments can significantly reduce the uncertainty in excluding the higher octant.With a typical O(meV)sensitivity on the effective mass|mee|,the neutrinoless double beta decay experiment can tell if the funnel region really exists and hence exclude the higher solar octant.With the sensitivity further improved to sub-meV,the two Majorana CP phases can be simultaneously determined.Thus,the normal neutrino mass ordering clearly shows phenomenological advantages over the inverted one.
基金Supported by the National Natural Science Foundation of China(11235006,11475093,11135009,11375065,11505301,and11620101004)the Tsinghua University Initiative Scientific Research Program(20121088035,20131089288,and 20151080432)+3 种基金the Key Laboratory of Particle&Radiation Imaging(Tsinghua University)the CAS Center for Excellence in Particle Physics(CCEPP)U.S.National Science Foundation Grant PHY-1404311(Beacom)U.S.Department of Energy under contract DE-AC02-98CH10886(Yeh)
文摘The China Jinping Underground Laboratory(CJPL), which has the lowest cosmic-ray muon flux and the lowest reactor neutrino flux of any laboratory, is ideal to carry out low-energy neutrino experiments. With two detectors and a total fiducial mass of 2000 tons for solar neutrino physics(equivalently, 3000 tons for geo-neutrino and supernova neutrino physics), the Jinping neutrino experiment will have the potential to identify the neutrinos from the CNO fusion cycles of the Sun, to cover the transition phase for the solar neutrino oscillation from vacuum to matter mixing, and to measure the geo-neutrino flux, including the Th/U ratio. These goals can be fulfilled with mature existing techniques. Efforts on increasing the target mass with multi-modular neutrino detectors and on developing the slow liquid scintillator will increase the Jinping discovery potential in the study of solar neutrinos,geo-neutrinos, supernova neutrinos, and dark matter.
基金the Higher Education Commission(HEC) of Pakistan for its financial support through Grant No.17-5-2(Ps2-044) HEC/Sch/2004
文摘We show how the traditional grid based method for finding neutrino oscillation parameters △m2 and tan2θ can be combined with an optimization technique, Differential Evolution (DE), to get a significant decrease in computer processing time required to obtain minimal chi-square (χ2) in four different regions of the parameter space. We demonstrate efficiency for the two-neutrinos case. For this, the χ2 function for neutrino oscillations is evaluated for grids with different density of points in standard allowed regions of the parameter space of △m2 and tan2θ using experimental and theoretical total event rates of ehlorine (Homestake), Gallex+GNO, SAGE, Superkamiokande, and SNO detectors. We find that using DE in combination with the grid based method with smail density of points can produce the results comparable with the one obtained using high density grid, in much lesser computation time.