期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Pretreated quercetin protects gerbil hippocampal CA1 pyramidal neurons from transient cerebral ischemic injury by increasing the expression of antioxidant enzymes 被引量:9
1
作者 Bai Hui Chen Joon Ha Park +13 位作者 Ji Hyeon Ahn Jeong Hwi Cho In Hye Kim Jae Chul Lee Moo-Ho Won Choong-Hyun Lee In Koo Hwang Jong-Dai Kim Il Jun Kang Jun Hwi Cho Bich Na Shin Yang Hee Kim Yun Lyul Lee Seung Min Park 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期220-227,共8页
Quercetin(QE; 3,5,7,3′,4′-pentahydroxyflavone), a well-known flavonoid, has been shown to prevent against neurodegenerative disorders and ischemic insults. However, few studies are reported regarding the neuroprot... Quercetin(QE; 3,5,7,3′,4′-pentahydroxyflavone), a well-known flavonoid, has been shown to prevent against neurodegenerative disorders and ischemic insults. However, few studies are reported regarding the neuroprotective mechanisms of QE after ischemic insults. Therefore, in this study, we investigated the effects of QE on ischemic injury and the expression of antioxidant enzymes in the hippocampal CA1 region of gerbils subjected to 5 minutes of transient cerebral ischemia. QE was pre-treated once daily for 15 days before ischemia. Pretreatment with QE protected hippocampal CA1 pyramidal neurons from ischemic injury, which was confirmed by neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. In addition, pretreatment with QE significantly increased the expression levels of endogenous antioxidant enzymes Cu/Zn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase in the hippocampal CA1 pyramidal neurons of animals with ischemic injury. These findings demonstrate that pretreated QE displayed strong neuroprotective effects against transient cerebral ischemia by increasing the expression of antioxidant enzymes. 展开更多
关键词 nerve regeneration flavonoids transient cerebral ischemia Cu/Zn superoxide dismutase catalase Mn superoxide dismutase glutathione peroxidase neural regeneration
下载PDF
Flavonoids from the stems and leaves of Scutellaria baicalensis Georgi attenuate H_2O_2-induced oxidative damage to rat cortical neurons 被引量:3
2
作者 Yongping Liu Kai Cao Hong Miao Jianjun Cheng Yazhen Shang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第27期2100-2104,共5页
Primary cultures of rat cortical neurons were treated with H2O2 in an in vitro model of free radical neurotoxicity. Flavonoids extracted from the stems and leaves of Scutellaria baicalensis Georgi, known as SSF, at co... Primary cultures of rat cortical neurons were treated with H2O2 in an in vitro model of free radical neurotoxicity. Flavonoids extracted from the stems and leaves of Scutellaria baicalensis Georgi, known as SSF, at concentrations of 18.98, 37.36 and 75.92 μg/mL, protected neurons against H2O2 injury in a dose-dependent manner. SSF increased cell survival, reduced lactate dehydrogenase release and inhibited malondialdehyde production. SSF also inhibited reductions in superoxide dismutase, glutathione peroxidase and Na+-K+-ATPase activities. These results in-dicate that SSF can protect rat cortical neurons against H2O2-induced oxidative injury. 展开更多
关键词 flavonoids from Scutellaria baicalensis Georgi H2O2 lactate dehydrogenase superoxide dismutase malondialdehyde glutathione peroxidase Na+-K+-ATPase neural regeneration
下载PDF
3′-Daidzein sulfonate sodium improves mitochondrial functions after cerebral ischemia/reperfusion injury 被引量:10
3
作者 Wa Yuan Qin Chen +4 位作者 Jing Zeng Hai Xiao Zhi-hua Huang Xiao Li Qiong Lei 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期235-241,共7页
3′-Daidzein sulfonate sodium is a new synthetic water-soluble compound derived from daidzein(an active ingredient of the kudzu vine root). It has been shown to have a protective effect on cerebral ischemia/reperfus... 3′-Daidzein sulfonate sodium is a new synthetic water-soluble compound derived from daidzein(an active ingredient of the kudzu vine root). It has been shown to have a protective effect on cerebral ischemia/reperfusion injury in rats. We plan to study the mechanism of its protective effect. 3′-Daidzein sulfonate sodium was injected in rats after cerebral ischemia/reperfusion injury. Results showed that 3′-daidzein sulfonate sodium significantly reduced mitochondrial swelling, significantly elevated the mitochondrial membrane potential, increased mitochondrial superoxide dismutase and glutathione peroxidase activities, and decreased mitochondrial malondialdehyde levels. 3′-Daidzein sulfonate sodium improved the structural integrity of the blood-brain barrier and reduced blood-brain barrier permeability. These findings confirmed that 3′-daidzein sulfonate sodium has a protective effect on mitochondrial functions after cerebral ischemia/reperfusion injury, improves brain energy metabolism, and provides protection against blood-brain barrier damage. 展开更多
关键词 nerve regeneration 3′-daidzein sulfonate sodium cerebral ischemia/reperfusion injury infarct volume anti-oxidation mitochondria mitochondrial membrane swelling mitochondrial membrane potential superoxide dismutase malondialdehyde glutathione peroxidase blood-brain barrier neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部