Superoxide ion was generated by the electrochemical reduction of oxygen at a platinum electrode in dimethylsulphoxide (DMSO). This work was focused on the nucleophilicity and scavenge of electrogenerated\|superoxide ...Superoxide ion was generated by the electrochemical reduction of oxygen at a platinum electrode in dimethylsulphoxide (DMSO). This work was focused on the nucleophilicity and scavenge of electrogenerated\|superoxide ion by cyclic voltammetry. The nucleophilic displacement reactions of superoxide ion with ethyl acetate and diethyl adipate were discussed and the reason for remarkable influence of diethyl adipate was elucidated. The scavenging activity of ascorbic acid was evaluated and the result allowed the conclusion that the scavenging ability of ascorbic acid is much lower in DMSO than in aqueous phase. UV\|spectrum of electrogenerated superoxide ion in DMSO exhibited a single absorption band with λ max at 275 nm, which certified further that the method of electrogeneration was reliable and superoxide ion was stable in DMSO.展开更多
The oxidation of pnitrotoluene with electro-generated superoxide ion in the presence or absence of metallo-porphyrins FeTPP, MnTPP and CoTPP in DMF was studied by cyclic voltammetry and controlled potential electrolys...The oxidation of pnitrotoluene with electro-generated superoxide ion in the presence or absence of metallo-porphyrins FeTPP, MnTPP and CoTPP in DMF was studied by cyclic voltammetry and controlled potential electrolysis, Metallo-porphyrins as catalysts for electroreduction of O_2, they can not only increase yields of p-nitrobensoic acid and selectivities of reaction but also enable the reaction proceed at lower negative potential.展开更多
Superoxide ion O^-_2 is prepared in aprotic media by carbon gas-diffusion-electrode for the first time. The experimental results indicate that this electrode is superior to carbon plane-electrode in the reaction of O^...Superoxide ion O^-_2 is prepared in aprotic media by carbon gas-diffusion-electrode for the first time. The experimental results indicate that this electrode is superior to carbon plane-electrode in the reaction of O^-_2 with p-bromonitrobenzene. When the gas-diffussion-electrode is used, the yield of the product nitrophenol increases by 20%, and the selectivity of the reaction is nearly doubled as compared with the plane-electrode.展开更多
Superoxide dismutase(SOD) is a crucial antioxidant enzyme playing the first defense line in antioxidant pathways against reactive oxygen species in various organisms including marine invertebrates. There exist mainl...Superoxide dismutase(SOD) is a crucial antioxidant enzyme playing the first defense line in antioxidant pathways against reactive oxygen species in various organisms including marine invertebrates. There exist mainly two specific forms, Cu/Zn-SOD(SOD1) and Mn-SOD(SOD2), in eukaryotes. SODs are known to be concurrently modulated by a variety of environmental stressors. By using central composite experimental design and response surface method, the joint effects of water temperature(18–34°C) and copper ion concentration(0.1–1.5 mg/L) on the total SOD activity in the digestive gland of Crassostrea ariakensis were studied. The results showed that the linear effect of temperature was highly significant(P〈0.01), the quadratic effect of temperature was significant(P〈0.05); the linear effect of copper ion concentration was not significant(P〉0.05), while the quadratic effect of copper ion concentration was highly significant(P〈0.01); the interactive effect of temperature and copper ion concentration was not significant(P〉0.05); the effect of temperature was greater than that of copper ion concentration. The model equation of digestive gland SOD enzyme activity towards the two factors of interest was established, with R2 and predictive R2 as high as 0.961 6 and 0.820 7, respectively, suggesting that the goodness-offit to experimental data be very satisfactory, and could be applied to prediction of digestive gland SOD activity in C. ariakensis under the conditions of the experiment. Our results would be conducive to addressing the health of aquatic animals and/or to detecting environmental problems by taking SOD as a potential bioindicator.展开更多
Introduction The electrochemical reduction of O;was investigated widely during the past two decades. O;can react with various organic compounds. O;as a new synthesis reagent has been being explored.
A series of cobalt doped TiO2(Co-TiO2) and Co Oxloaded TiO2(Co/TiO2) catalysts prepared by sol–gel and impregnation methods respectively were investigated on selective catalytic reduction with NH3(NH3-SCR) of N...A series of cobalt doped TiO2(Co-TiO2) and Co Oxloaded TiO2(Co/TiO2) catalysts prepared by sol–gel and impregnation methods respectively were investigated on selective catalytic reduction with NH3(NH3-SCR) of NO. It was found that Co-TiO2 catalyst showed more preferable catalytic activity at low temperature range. From characterization results of XRD,TEM, Raman and FT-IR, Co species were proved to be doped into TiO2 lattice by replaced Ti atoms. After being characterized and analyzed by NH3-TPD, PL, XPS, EPR and DRIFTS, it was found that the better NH3-SCR activities of Co-TiO2 catalysts, compared with Co/TiO2 catalyst, were ascribed to the formation of more oxygen vacancies which further promoted the production of more superoxide ions(O-2). The superoxide ions were crucial for the formation of low temperature SCR reaction intermediates(NO-3) by reacting with adsorbed NO molecule. Therefore, these aspects were responsible for the higher low temperature NH3-SCR activity of Co-TiO2 catalysts.展开更多
文摘Superoxide ion was generated by the electrochemical reduction of oxygen at a platinum electrode in dimethylsulphoxide (DMSO). This work was focused on the nucleophilicity and scavenge of electrogenerated\|superoxide ion by cyclic voltammetry. The nucleophilic displacement reactions of superoxide ion with ethyl acetate and diethyl adipate were discussed and the reason for remarkable influence of diethyl adipate was elucidated. The scavenging activity of ascorbic acid was evaluated and the result allowed the conclusion that the scavenging ability of ascorbic acid is much lower in DMSO than in aqueous phase. UV\|spectrum of electrogenerated superoxide ion in DMSO exhibited a single absorption band with λ max at 275 nm, which certified further that the method of electrogeneration was reliable and superoxide ion was stable in DMSO.
文摘The oxidation of pnitrotoluene with electro-generated superoxide ion in the presence or absence of metallo-porphyrins FeTPP, MnTPP and CoTPP in DMF was studied by cyclic voltammetry and controlled potential electrolysis, Metallo-porphyrins as catalysts for electroreduction of O_2, they can not only increase yields of p-nitrobensoic acid and selectivities of reaction but also enable the reaction proceed at lower negative potential.
文摘Superoxide ion O^-_2 is prepared in aprotic media by carbon gas-diffusion-electrode for the first time. The experimental results indicate that this electrode is superior to carbon plane-electrode in the reaction of O^-_2 with p-bromonitrobenzene. When the gas-diffussion-electrode is used, the yield of the product nitrophenol increases by 20%, and the selectivity of the reaction is nearly doubled as compared with the plane-electrode.
基金The Guangdong Province Education Department under contract No.GCZX-A0909the Guangdong Province Ocean and Fisheries Science & Technology Extension Project under contract No.20120980+1 种基金the Guangdong Province Industry-University-Science Partnership Project under contract No.20110908the Science&Technology Project of Huaiyin Normal University under contract No.WH0031
文摘Superoxide dismutase(SOD) is a crucial antioxidant enzyme playing the first defense line in antioxidant pathways against reactive oxygen species in various organisms including marine invertebrates. There exist mainly two specific forms, Cu/Zn-SOD(SOD1) and Mn-SOD(SOD2), in eukaryotes. SODs are known to be concurrently modulated by a variety of environmental stressors. By using central composite experimental design and response surface method, the joint effects of water temperature(18–34°C) and copper ion concentration(0.1–1.5 mg/L) on the total SOD activity in the digestive gland of Crassostrea ariakensis were studied. The results showed that the linear effect of temperature was highly significant(P〈0.01), the quadratic effect of temperature was significant(P〈0.05); the linear effect of copper ion concentration was not significant(P〉0.05), while the quadratic effect of copper ion concentration was highly significant(P〈0.01); the interactive effect of temperature and copper ion concentration was not significant(P〉0.05); the effect of temperature was greater than that of copper ion concentration. The model equation of digestive gland SOD enzyme activity towards the two factors of interest was established, with R2 and predictive R2 as high as 0.961 6 and 0.820 7, respectively, suggesting that the goodness-offit to experimental data be very satisfactory, and could be applied to prediction of digestive gland SOD activity in C. ariakensis under the conditions of the experiment. Our results would be conducive to addressing the health of aquatic animals and/or to detecting environmental problems by taking SOD as a potential bioindicator.
基金Supported by the National Natural Science Foundation of China
文摘Introduction The electrochemical reduction of O;was investigated widely during the past two decades. O;can react with various organic compounds. O;as a new synthesis reagent has been being explored.
基金financially supported by the Key Project of Chinese National Programs for Research and Development(No.2016YFC0203800)the National Natural Science Foundation of China(Nos.51408309 and 51578288)+4 种基金the Science and Technology Support Program of Jiangsu Province(No.E2014713)the Natural Science Foundation of Jiangsu Province(No.BK20140777)the Industry-Academia Cooperation Innovation Fund Projects of Jiangsu Province(No.BY2014004-10)the Jiangsu Province Scientific and Technological Achievements into a Special Fund Project(No.BA2015062)the Top-notch Academic Programs of Jiangsu Higher Education Institutions
文摘A series of cobalt doped TiO2(Co-TiO2) and Co Oxloaded TiO2(Co/TiO2) catalysts prepared by sol–gel and impregnation methods respectively were investigated on selective catalytic reduction with NH3(NH3-SCR) of NO. It was found that Co-TiO2 catalyst showed more preferable catalytic activity at low temperature range. From characterization results of XRD,TEM, Raman and FT-IR, Co species were proved to be doped into TiO2 lattice by replaced Ti atoms. After being characterized and analyzed by NH3-TPD, PL, XPS, EPR and DRIFTS, it was found that the better NH3-SCR activities of Co-TiO2 catalysts, compared with Co/TiO2 catalyst, were ascribed to the formation of more oxygen vacancies which further promoted the production of more superoxide ions(O-2). The superoxide ions were crucial for the formation of low temperature SCR reaction intermediates(NO-3) by reacting with adsorbed NO molecule. Therefore, these aspects were responsible for the higher low temperature NH3-SCR activity of Co-TiO2 catalysts.