Spatial, temporal and coherent superposition of quantum states is considered. A consistent interpretation of the simultaneous superposition of stationary quantum states within material wave packets is proposed.
An efficient two-step quantum key distribution (QKD) protocol with orthogonal product states in the (×)(n ≥3) Hilbert space is presented. In this protocol, the particles in the orthogonal product states fo...An efficient two-step quantum key distribution (QKD) protocol with orthogonal product states in the (×)(n ≥3) Hilbert space is presented. In this protocol, the particles in the orthogonal product states form two particle sequences. The sender, Alice, first sends one sequence to the receiver, Bob. After Bob receives the first particle sequence, Alice and Bob check eavesdropping by measuring a fraction of particles randomly chosen. After ensuring the security of the quantum channel, Alice sends the other particle sequence to Bob. By making an orthogonal measurement on the two particle sequences, Bob can obtain the information of the orthogonal product states sent by Alice. This protocol has many distinct features such as great capacity, high efficiency in that it uses all orthogonal product states in distributing the key except those chosen for checking eavesdroppers.展开更多
To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communic...To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network.Based on this point,an efficient and secure quantum communication scheme with partially entangled states is presented.In our scheme,the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states.Thus,the security of quantum communication is guaranteed.The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices.Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high.In addition,the auxiliary quantum bit provides a heralded mechanism for successful communication.Based on the critical components that are presented in this article an efficient,secure,and practical wide-area quantum communication can be achieved.展开更多
In this paper, we propose a controlled quantum state sharing scheme to share an arbitrary two-qubit state using a five-qubit cluster state and the Bell state measurement. In this scheme, the five-qubit cluster state i...In this paper, we propose a controlled quantum state sharing scheme to share an arbitrary two-qubit state using a five-qubit cluster state and the Bell state measurement. In this scheme, the five-qubit cluster state is shared by a sender (Alice), a controller (Charlie), and a receiver (Bob), and the sender only needs to perform the Bell-state measurements on her particles during the quantum state sharing process, the controller performs a single-qubit projective measurement on his particles, then the receiver can reconstruct the arbitrary two-qubit state by performing some appropriate unitary transformations on his particles after he has known the measured results of the sender and the controller.展开更多
This paper proposes a protocol for multi-party quantum secret sharing utilizing four non-orthogonal two-particle entangled states following some ideas in the schemes proposed by Liu et al. (2006 Chin. Phys. Lett. 23 ...This paper proposes a protocol for multi-party quantum secret sharing utilizing four non-orthogonal two-particle entangled states following some ideas in the schemes proposed by Liu et al. (2006 Chin. Phys. Lett. 23 3148) and Zhang et al. (2009 Chin. Phys. B 18 2149) respectively. The theoretical efficiency for qubits of the new protocol is improved from 50% to approaching 100%. All the entangled states can be used for generating the private key except those used for the eavesdropping check. The validity of a probable attack called opaque cheat attack to this kind of protocols is considered in the paper for the first time.展开更多
Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an effic...Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source.By properly modeling the target states,a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique,and hence our method reduces the resource consumption without loss of accuracy.We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data.Explicitly,the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states.Our method could be generalized to estimate other kinds of states,as well as other quantum information tasks.展开更多
In the domain of quantum cryptography,the implementation of quantum secret sharing stands as a pivotal element.In this paper,we propose a novel verifiable quantum secret sharing protocol using the d-dimensional produc...In the domain of quantum cryptography,the implementation of quantum secret sharing stands as a pivotal element.In this paper,we propose a novel verifiable quantum secret sharing protocol using the d-dimensional product state and Lagrange interpolation techniques.This protocol is initiated by the dealer Alice,who initially prepares a quantum product state,selected from a predefined set of orthogonal product states within the C~d■C~d framework.Subsequently,the participants execute unitary operations on this product state to recover the underlying secret.Furthermore,we subject the protocol to a rigorous security analysis,considering both eavesdropping attacks and potential dishonesty from the participants.Finally,we conduct a comparative analysis of our protocol against existing schemes.Our scheme exhibits economies of scale by exclusively employing quantum product states,thereby realizing significant cost-efficiency advantages.In terms of access structure,we adopt a(t, n)-threshold architecture,a strategic choice that augments the protocol's practicality and suitability for diverse applications.Furthermore,our protocol includes a rigorous integrity verification mechanism to ensure the honesty and reliability of the participants throughout the execution of the protocol.展开更多
In 1980,scientist Klaus von Klitzing discovered the quantum Hall effect[1],a groundbreaking achievement that earned him the Nobel Prize in Physics in 1985.This discovery was a significant milestone in condensed matter...In 1980,scientist Klaus von Klitzing discovered the quantum Hall effect[1],a groundbreaking achievement that earned him the Nobel Prize in Physics in 1985.This discovery was a significant milestone in condensed matter physics,representing the first identification of topological quantum states.展开更多
We propose a new protocol for quantum teleportation(QT)which adopts the Brown state as the quantum channel.This work focuses on the teleportation of a single unknown two-qubit state via a Brown state channel in an ide...We propose a new protocol for quantum teleportation(QT)which adopts the Brown state as the quantum channel.This work focuses on the teleportation of a single unknown two-qubit state via a Brown state channel in an ideal environment.To validate the effectiveness of our proposed scheme,we conduct experiments by using the quantum circuit simulator Quirk.Furthermore,we investigate the effects of four noisy channels,namely,the phase damping noise,the bit-flip noise,the amplitude damping noise,and the phase-flip noise.Notably,we employ Monte Carlo simulation to elucidate the fidelity density under various noise parameters.Our analysis demonstrates that the fidelity of the protocol in a noisy environment is influenced significantly by the amplitude of the initial state and the noise factor.展开更多
Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix...Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix elements from a dual fermion-boson Lagrangian. In this formalism, the fermion binding energies are compensated by boson energies, indicating that particles can be generated out of the vacuum. This yields quantitative solutions for various mesons ω (0.78 GeV) - Υ (9.46 GeV) and all leptons e, μ and τ, with uncertainties in the extracted properties of less than 1‰. For transparency, a Web-page with the address htpps://h2909473.stratoserver.net has been constructed, where all calculations can be run on line and also the underlying fortran source code can be inspected.展开更多
This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and de...This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.展开更多
In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protoc...In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol,the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie's successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover,the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence(AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source.展开更多
In this paper the superpositions of two arbitrary coherent states |ψ〉 = α |β| + be^iψ |mβe^iδ〉 are constructed by using the superposition principle of quantum mechanics. The entropic squeezing effects of ...In this paper the superpositions of two arbitrary coherent states |ψ〉 = α |β| + be^iψ |mβe^iδ〉 are constructed by using the superposition principle of quantum mechanics. The entropic squeezing effects of the quantum states are studied. The numerical results indicate that the amplitudes, the ratio between the amplitudes of two coherent states, the phase difference between the two components and the relative phase of the two coefficients play important roles in the squeezing effects of the position entropy and momentum entropy.展开更多
Unlike conventional topological edge states confined at a domain wall between two topologically distinct media,the recently proposed large-area topological waveguide states in three-layer heterostructures,which consis...Unlike conventional topological edge states confined at a domain wall between two topologically distinct media,the recently proposed large-area topological waveguide states in three-layer heterostructures,which consist of a domain featuring Dirac points sandwiched between two domains of different topologies,have introduced the mode width degree of freedom for more flexible manipulation of electromagnetic waves.Until now,the experimental realizations of photonic large-area topological waveguide states have been exclusively based on quantum Hall and quantum valley-Hall systems.We propose a new way to create large-area topological waveguide states based on the photonic quantum spin-Hall system and observe their unique feature of pseudo-spin-momentum-locking unidirectional propagation for the first time in experiments.Moreover,due to the new effect provided by the mode width degree of freedom,the propagation of these large-area quantum spin-Hall waveguide states exhibits unusually strong robustness against defects,e.g.,large voids with size reaching several unit cells,which has not been reported previously.Finally,practical applications,such as topological channel intersection and topological energy concentrator,are further demonstrated based on these novel states.Our work not only completes the last member of such states in the photonic quantum Hall,quantum valley-Hall,and quantum spin-Hall family,but also provides further opportunities for high-capacity energy transport with tunable mode width and exceptional robustness in integrated photonic devices and on-chip communications.展开更多
This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state t...This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.展开更多
To solve the problems of updating sub-secrets or secrets as well as adding or deleting agents in the quantum secret sharing protocol, we propose a two-particle transform of Bell states, and consequently present a nove...To solve the problems of updating sub-secrets or secrets as well as adding or deleting agents in the quantum secret sharing protocol, we propose a two-particle transform of Bell states, and consequently present a novel dynamic quantum secret sharing protocol. The new protocol can not only resist some typical attacks, but also be more efficient than the existing protocols. Furthermore, we take advantage of the protocol to establish the dynamic secret sharing of a quantum state protocol for two-particle maximum entangled states.展开更多
This paper proposes an experimentally feasible scheme for implementing quantum dense coding of trapped-ion system in decoherence-free states. As the phase changes due to time evolution of components with different eig...This paper proposes an experimentally feasible scheme for implementing quantum dense coding of trapped-ion system in decoherence-free states. As the phase changes due to time evolution of components with different eigenenergies of quantum superposition are completely frozen, quantum dense coding based on this model would be perfect. The scheme is insensitive to heating of vibrational mode and Bell states can be exactly distinguished via detecting the ionic state.展开更多
We propose an arbitrated quantum signature (AQS) scheme with continuous variable (CV) squeezed vacuum states, which requires three parties, i.e., the signer Alice, the verifier Bob and the arbitrator Charlie trust...We propose an arbitrated quantum signature (AQS) scheme with continuous variable (CV) squeezed vacuum states, which requires three parties, i.e., the signer Alice, the verifier Bob and the arbitrator Charlie trusted by Alice and Bob, and three phases consisting of the initial phase, the signature phase and the verification phase. We evaluate and compare the original state and the teleported state by using the fidelity and the beam splitter (BS) strategy. The security is ensured by the CV-based quantum key distribution (CV-QKD) and quantum teleportation of squeezed states. Security analyses show that the generated signature can be neither disavowed by the signer and the receiver nor counterfeited by anyone with the shared keys. Furthermore, the scheme can also detect other manners of potential attack although they may be successful. Also, the integrality and authenticity of the transmitted messages can be guaranteed. Compared to the signature scheme of CV-based coherent states, our scheme has better encoding efficiency and performance. It is a potential high-speed quantum signature scheme with high repetition rate and detection efficiency which can be achieved by using the standard off-the-shelf components when compared to the discrete-variable (DV) quantum signature scheme.展开更多
In this paper a scheme for controlled teleportation of arbitrary high-dimensional unknown quantum states is proposed by using the generalized Bell-basis measurement and the generalized Hadamard transformation. As two ...In this paper a scheme for controlled teleportation of arbitrary high-dimensional unknown quantum states is proposed by using the generalized Bell-basis measurement and the generalized Hadamard transformation. As two special cases, two schemes of controlled teleportation of an unknown single-qutrit state and an unknown two-qutrit state are investigated in detail. In the first scheme, a maximally entangled three-qutrit state is used as the quantum channel, while in the second scheme, an entangled two-qutrit state and an entangled three-qutrit state are employed as the quantum channels. In these schemes, an unknown qutrit state can be teleported to either one of two receivers, but only one of them can reconstruct the qutrit state with the help of the other. Based on the case of qutrits, a scheme of controlled teleportation of an unknown qudit state is presented.展开更多
We present a two-photon three-dimensional multiparty quantum secret sharing scheme.The secret messagesare encoded by performing local operations.This is different from those quantum secret sharing protocols that all s...We present a two-photon three-dimensional multiparty quantum secret sharing scheme.The secret messagesare encoded by performing local operations.This is different from those quantum secret sharing protocols that all sharersmust make a state measurement.The merit of our protocol is the high capacity.展开更多
文摘Spatial, temporal and coherent superposition of quantum states is considered. A consistent interpretation of the simultaneous superposition of stationary quantum states within material wave packets is proposed.
基金Project supported by the National Natural Science Foundation of China (Grant No 60373059), the Doctoral Programs Foundation of the Ministry of Education of China (Grant No 20040013007), and the Major Research plan of the National Natural Science Foundation of China (Grant No 90604023).
文摘An efficient two-step quantum key distribution (QKD) protocol with orthogonal product states in the (×)(n ≥3) Hilbert space is presented. In this protocol, the particles in the orthogonal product states form two particle sequences. The sender, Alice, first sends one sequence to the receiver, Bob. After Bob receives the first particle sequence, Alice and Bob check eavesdropping by measuring a fraction of particles randomly chosen. After ensuring the security of the quantum channel, Alice sends the other particle sequence to Bob. By making an orthogonal measurement on the two particle sequences, Bob can obtain the information of the orthogonal product states sent by Alice. This protocol has many distinct features such as great capacity, high efficiency in that it uses all orthogonal product states in distributing the key except those chosen for checking eavesdroppers.
基金supported by the National Natural Science Foundation of China(Grant Nos.61072067 and 61372076)the 111 Project(Grant No.B08038)+1 种基金the Fund from the State Key Laboratory of Integrated Services Networks(Grant No.ISN 1001004)the Fundamental Research Funds for the Central Universities(Grant Nos.K5051301059 and K5051201021)
文摘To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network.Based on this point,an efficient and secure quantum communication scheme with partially entangled states is presented.In our scheme,the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states.Thus,the security of quantum communication is guaranteed.The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices.Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high.In addition,the auxiliary quantum bit provides a heralded mechanism for successful communication.Based on the critical components that are presented in this article an efficient,secure,and practical wide-area quantum communication can be achieved.
基金Project supported by the National Natural Science Foundation of China (Grant No.10902083)the Natural Science Foundation of Shannxi Province,China (Grant No.2009JM1007)
文摘In this paper, we propose a controlled quantum state sharing scheme to share an arbitrary two-qubit state using a five-qubit cluster state and the Bell state measurement. In this scheme, the five-qubit cluster state is shared by a sender (Alice), a controller (Charlie), and a receiver (Bob), and the sender only needs to perform the Bell-state measurements on her particles during the quantum state sharing process, the controller performs a single-qubit projective measurement on his particles, then the receiver can reconstruct the arbitrary two-qubit state by performing some appropriate unitary transformations on his particles after he has known the measured results of the sender and the controller.
基金supported by the Key Program of the National Natural Science Foundation of China (Grant No. 90718007)the National Natural Science Foundation of China (Grant Nos. 60773135 and 60970140)
文摘This paper proposes a protocol for multi-party quantum secret sharing utilizing four non-orthogonal two-particle entangled states following some ideas in the schemes proposed by Liu et al. (2006 Chin. Phys. Lett. 23 3148) and Zhang et al. (2009 Chin. Phys. B 18 2149) respectively. The theoretical efficiency for qubits of the new protocol is improved from 50% to approaching 100%. All the entangled states can be used for generating the private key except those used for the eavesdropping check. The validity of a probable attack called opaque cheat attack to this kind of protocols is considered in the paper for the first time.
基金Project supported by the National Key Research and Development Program of China (Grant No.2019YFA0705000)Leading-edge technology Program of Jiangsu Natural Science Foundation (Grant No.BK20192001)the National Natural Science Foundation of China (Grant No.11974178)。
文摘Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source.By properly modeling the target states,a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique,and hence our method reduces the resource consumption without loss of accuracy.We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data.Explicitly,the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states.Our method could be generalized to estimate other kinds of states,as well as other quantum information tasks.
基金supported by the National Natural Science Foundation of China(Grant No.12301590)the Natural Science Foundation of Hebei Province(Grant No.A2022210002)。
文摘In the domain of quantum cryptography,the implementation of quantum secret sharing stands as a pivotal element.In this paper,we propose a novel verifiable quantum secret sharing protocol using the d-dimensional product state and Lagrange interpolation techniques.This protocol is initiated by the dealer Alice,who initially prepares a quantum product state,selected from a predefined set of orthogonal product states within the C~d■C~d framework.Subsequently,the participants execute unitary operations on this product state to recover the underlying secret.Furthermore,we subject the protocol to a rigorous security analysis,considering both eavesdropping attacks and potential dishonesty from the participants.Finally,we conduct a comparative analysis of our protocol against existing schemes.Our scheme exhibits economies of scale by exclusively employing quantum product states,thereby realizing significant cost-efficiency advantages.In terms of access structure,we adopt a(t, n)-threshold architecture,a strategic choice that augments the protocol's practicality and suitability for diverse applications.Furthermore,our protocol includes a rigorous integrity verification mechanism to ensure the honesty and reliability of the participants throughout the execution of the protocol.
文摘In 1980,scientist Klaus von Klitzing discovered the quantum Hall effect[1],a groundbreaking achievement that earned him the Nobel Prize in Physics in 1985.This discovery was a significant milestone in condensed matter physics,representing the first identification of topological quantum states.
基金Project supported by the National Natural Science Foundation of China (Grant No.61873162)Fund from the Key Laboratory of System Control and Information Processing,Ministry of Education,China (Grant No.Scip20240106)。
文摘We propose a new protocol for quantum teleportation(QT)which adopts the Brown state as the quantum channel.This work focuses on the teleportation of a single unknown two-qubit state via a Brown state channel in an ideal environment.To validate the effectiveness of our proposed scheme,we conduct experiments by using the quantum circuit simulator Quirk.Furthermore,we investigate the effects of four noisy channels,namely,the phase damping noise,the bit-flip noise,the amplitude damping noise,and the phase-flip noise.Notably,we employ Monte Carlo simulation to elucidate the fidelity density under various noise parameters.Our analysis demonstrates that the fidelity of the protocol in a noisy environment is influenced significantly by the amplitude of the initial state and the noise factor.
文摘Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix elements from a dual fermion-boson Lagrangian. In this formalism, the fermion binding energies are compensated by boson energies, indicating that particles can be generated out of the vacuum. This yields quantitative solutions for various mesons ω (0.78 GeV) - Υ (9.46 GeV) and all leptons e, μ and τ, with uncertainties in the extracted properties of less than 1‰. For transparency, a Web-page with the address htpps://h2909473.stratoserver.net has been constructed, where all calculations can be run on line and also the underlying fortran source code can be inspected.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and the Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61271238 and 61475075)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20123223110003)+7 种基金the Natural Science Research Foundation for Universities of Jiangsu Province of China(Grant No.11KJA510002)the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network TechnologyMinistry of EducationChina(Grant No.NYKL2015011)the Innovation Program of Graduate Education of Jiangsu ProvinceChina(Grant No.KYLX0810)partially supported by Qinglan Project of Jiangsu ProvinceChina
文摘In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol,the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie's successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover,the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence(AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source.
基金Project supported by the Natural Science Foundation of Fujian Province,China (Grant No T0650013)
文摘In this paper the superpositions of two arbitrary coherent states |ψ〉 = α |β| + be^iψ |mβe^iδ〉 are constructed by using the superposition principle of quantum mechanics. The entropic squeezing effects of the quantum states are studied. The numerical results indicate that the amplitudes, the ratio between the amplitudes of two coherent states, the phase difference between the two components and the relative phase of the two coefficients play important roles in the squeezing effects of the position entropy and momentum entropy.
基金supported by the National Natural Science Foundation of China (Grant Nos.U2230114 and 12004425)the Natural Science Foundation of Jiangsu Province (Grant No.BK20200630)the National Key Research and Development Program of China (Grant No.2022YFA1203500).
文摘Unlike conventional topological edge states confined at a domain wall between two topologically distinct media,the recently proposed large-area topological waveguide states in three-layer heterostructures,which consist of a domain featuring Dirac points sandwiched between two domains of different topologies,have introduced the mode width degree of freedom for more flexible manipulation of electromagnetic waves.Until now,the experimental realizations of photonic large-area topological waveguide states have been exclusively based on quantum Hall and quantum valley-Hall systems.We propose a new way to create large-area topological waveguide states based on the photonic quantum spin-Hall system and observe their unique feature of pseudo-spin-momentum-locking unidirectional propagation for the first time in experiments.Moreover,due to the new effect provided by the mode width degree of freedom,the propagation of these large-area quantum spin-Hall waveguide states exhibits unusually strong robustness against defects,e.g.,large voids with size reaching several unit cells,which has not been reported previously.Finally,practical applications,such as topological channel intersection and topological energy concentrator,are further demonstrated based on these novel states.Our work not only completes the last member of such states in the photonic quantum Hall,quantum valley-Hall,and quantum spin-Hall family,but also provides further opportunities for high-capacity energy transport with tunable mode width and exceptional robustness in integrated photonic devices and on-chip communications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB338002)
文摘To solve the problems of updating sub-secrets or secrets as well as adding or deleting agents in the quantum secret sharing protocol, we propose a two-particle transform of Bell states, and consequently present a novel dynamic quantum secret sharing protocol. The new protocol can not only resist some typical attacks, but also be more efficient than the existing protocols. Furthermore, we take advantage of the protocol to establish the dynamic secret sharing of a quantum state protocol for two-particle maximum entangled states.
基金Project supported by the Important Program of Hunan Provincial Education Department (Grant No 06A038)Department of Education of Hunan Province (Grant No 06C080)Hunan Provincial Natural Science Foundation,China (Grant No 06JJ4003)
文摘This paper proposes an experimentally feasible scheme for implementing quantum dense coding of trapped-ion system in decoherence-free states. As the phase changes due to time evolution of components with different eigenenergies of quantum superposition are completely frozen, quantum dense coding based on this model would be perfect. The scheme is insensitive to heating of vibrational mode and Bell states can be exactly distinguished via detecting the ionic state.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61379153 and 61572529)
文摘We propose an arbitrated quantum signature (AQS) scheme with continuous variable (CV) squeezed vacuum states, which requires three parties, i.e., the signer Alice, the verifier Bob and the arbitrator Charlie trusted by Alice and Bob, and three phases consisting of the initial phase, the signature phase and the verification phase. We evaluate and compare the original state and the teleported state by using the fidelity and the beam splitter (BS) strategy. The security is ensured by the CV-based quantum key distribution (CV-QKD) and quantum teleportation of squeezed states. Security analyses show that the generated signature can be neither disavowed by the signer and the receiver nor counterfeited by anyone with the shared keys. Furthermore, the scheme can also detect other manners of potential attack although they may be successful. Also, the integrality and authenticity of the transmitted messages can be guaranteed. Compared to the signature scheme of CV-based coherent states, our scheme has better encoding efficiency and performance. It is a potential high-speed quantum signature scheme with high repetition rate and detection efficiency which can be achieved by using the standard off-the-shelf components when compared to the discrete-variable (DV) quantum signature scheme.
基金Project supported by the Natural Science Foundation of Education Bureau of Jiangsu Province of China (Grant No 05 KJD 140035).
文摘In this paper a scheme for controlled teleportation of arbitrary high-dimensional unknown quantum states is proposed by using the generalized Bell-basis measurement and the generalized Hadamard transformation. As two special cases, two schemes of controlled teleportation of an unknown single-qutrit state and an unknown two-qutrit state are investigated in detail. In the first scheme, a maximally entangled three-qutrit state is used as the quantum channel, while in the second scheme, an entangled two-qutrit state and an entangled three-qutrit state are employed as the quantum channels. In these schemes, an unknown qutrit state can be teleported to either one of two receivers, but only one of them can reconstruct the qutrit state with the help of the other. Based on the case of qutrits, a scheme of controlled teleportation of an unknown qudit state is presented.
文摘We present a two-photon three-dimensional multiparty quantum secret sharing scheme.The secret messagesare encoded by performing local operations.This is different from those quantum secret sharing protocols that all sharersmust make a state measurement.The merit of our protocol is the high capacity.