期刊文献+
共找到3,885篇文章
< 1 2 195 >
每页显示 20 50 100
Supersonic expansion and condensation characteristics of hydrogen gas under different temperature conditions
1
作者 Xinyue Duan Zeyu Zhang +4 位作者 Ziyuan Zhao Yang Liu Liang Gong Xuewen Cao Jiang Bian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期220-226,共7页
This paper introduced supersonic expansion liquefaction technology into the field of hydrogen liquefaction.The mathematical model for supersonic condensation of hydrogen gas in a Laval nozzle model was established.The... This paper introduced supersonic expansion liquefaction technology into the field of hydrogen liquefaction.The mathematical model for supersonic condensation of hydrogen gas in a Laval nozzle model was established.The supersonic expansion and condensation characteristics of hydrogen gas under different temperature conditions were investigated.The simulation results show that the droplet number rises rapidly from 0 at the nozzle throat as the inlet temperature increases,and the maximum droplet number generated is 1.339×10^(18)kg^(-1)at inlet temperature of 36.0 K.When hydrogen nucleation occurs,the droplet radius increases significantly and shows a positive correlation with the increase in the inlet temperature,and the maximum droplet radii are 6.667×10^(-8)m,1.043×10^(-7)m,and 1.099×10^(-7)m when the inlet temperature is 36.0 K,36.5 K,and 37.0 K,respectively.The maximum nucleation rate decreases with increasing inlet temperature,and the nucleation region of the Laval nozzle becomes wider.The liquefaction efficiency can be effectively improved by lowering the inlet temperature.This is because a lower inlet temperature provides more subcooling,which allows the hydrogen to reach the thermodynamic conditions required for large-scale condensation more quickly. 展开更多
关键词 HYDROGEN LIQUEFACTION supersonic CONDENSATION Laval nozzle Computational fluid dynamics
下载PDF
New physics of supersonic ruptures 被引量:1
2
作者 Boris G.Tarasov 《Deep Underground Science and Engineering》 2023年第3期207-244,共38页
Until recently,it is believed that the rupture speed above the pressure wave is impossible since spontaneously propagating ruptures are driven by the energy released due to the rupture motion,which is transferred thro... Until recently,it is believed that the rupture speed above the pressure wave is impossible since spontaneously propagating ruptures are driven by the energy released due to the rupture motion,which is transferred through the medium to the rupture tip region at the maximum speed equal to the pressure wave speed.However,the apparent violation of classic theories has been revealed by new experimental results demonstrating supersonic shear ruptures.This paper presents a detailed analysis of the recently discovered shear rupture mechanism(fan hinged),which suggests a new physics of energy supply to the tip of supersonic ruptures.The key element of this mechanism is the fan‐shaped structure of the head of extreme ruptures,which is formed as a result of an intense tensile cracking process with the creation of intercrack slabs that act as hinges between the shearing rupture faces.The fan structure is featured with the following extraordinary properties:extremely low friction approaching zero;amplification of shear stresses above the material strength at low applied shear stresses;creation of a self‐disbalancing stress state causing a spontaneous rupture growth;abnormally high energy release;generation of driving energy directly at the rupture tip which excludes the need to transfer energy through the medium.The fan mechanism operates in intact rocks at stress conditions corresponding to seismogenic depths and in pre‐existing extremely smooth interfaces due to identical tensile cracking processes at these conditions.This is Paper 1(of two companion papers)which discusses the fan theory and extreme ruptures in experiments on extremely smooth interfaces.Paper 2 entitled“Fan‐hinged shear instead of frictional stick‐slip as the main and most dangerous mechanism of natural,induced and volcanic earthquakes in the earth's crust”considers extreme ruptures in intact rocks.Further study of this subject is a major challenge for deep underground science,earthquake and fracture mechanics,physics,and tribology. 展开更多
关键词 fan‐hinged rupture mechanism laboratory earthquakes on extremely smooth interfaces physics of supershear and supersonic ruptures rupture energy budget
下载PDF
Computational Analysis of Surface Pressure Distribution over a 2D Wedge in the Supersonic and Hypersonic Flow Regimes
3
作者 Javed S.Shaikh Krishna Kumar +1 位作者 Khizar A.Pathan Sher A.Khan 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1637-1653,共17页
The complex fluid-dynamic instabilities and shock waves occurring along the surface of a two-dimensional wedge at high values of the Mach number are studied here through numerical solution of the governing equations.M... The complex fluid-dynamic instabilities and shock waves occurring along the surface of a two-dimensional wedge at high values of the Mach number are studied here through numerical solution of the governing equations.Moreover,a regression model is implemented to determine the pressure distribution for various Mach numbers and angles of incidence.The Mach number spans the interval from 1.5 to 12.The wedge angles(θ)are from 5°to 25°.The pressure ratio(P2/P1)is reported at various locations(x/L)along the 2D wedge.The results of the numerical simulations are compared with the regression model showing good agreement. 展开更多
关键词 CFD analysis supersonic wedge angle Mach number
下载PDF
A Numerical Study on Supersonic Combustion Optimization Based on the Streamwise Vortex-Couple Method
4
作者 Hao Tian Yongkang Zheng Hanxin Zhang 《Fluid Dynamics & Materials Processing》 EI 2023年第1期207-222,共16页
In this paper,some typical methods to promote mixing in supersonic combustion are reviewed,and the fluid-dynamic mechanism underpinning the development of the supersonic shear layer in the presence of a streamwise vor... In this paper,some typical methods to promote mixing in supersonic combustion are reviewed,and the fluid-dynamic mechanism underpinning the development of the supersonic shear layer in the presence of a streamwise vortex is analyzed through computational fluid dynamics.It is proven that the streamwise vortex-couple method is an excellent approach to enhance mixing.A specific combustor design is proposed accordingly. 展开更多
关键词 supersonic combustion streamwise vortex numerical simulation
下载PDF
Study on Collision Process of Opposing Unsteady Supersonic Jets and Shock Waves
5
作者 Sakira Uno Hiroshi Fukuoka +1 位作者 Atsushi Suda Ikurou Umezu 《Open Journal of Fluid Dynamics》 CAS 2023年第2期104-112,共9页
Double pulsed-laser-ablation is a promising method to prepare nanoparticle composites. The backward movement of the plume after the collision with counter-propagating shock wave has been observed in experiments. In th... Double pulsed-laser-ablation is a promising method to prepare nanoparticle composites. The backward movement of the plume after the collision with counter-propagating shock wave has been observed in experiments. In the present study, collision dynamics of the oppositely injected Si and Ge jets into a He background gas was numerically calculated as a simulation for double pulsed-laser-ablation. The experimentally observed backward movement was reproduced. The effect of distance between two jet exits on the distance of backward movement of the jet, B<sub>L</sub>, after the collision with the counter-propagating shock front was calculated to discuss the collision dynamics and to optimize the target distance for the experiment. We found that B<sub>L </sub>does not decrease monotonically with increasing distance between two jet exits, but has a maximum value at a certain distance. This behavior is discussed by calculating the expansion dynamics of an individual jet. Shock wave grows with time at the initial stage of the jet expansion and then attenuates;the density just behind the shock front for individual jet has a maximum value at a certain time and position. B<sub>L</sub> has a maximum value when the densities just behind the shock fronts for the individual jets have maximum values. This result is important for designing the appropriate distance between the two jet exits, i.e., the distance between the targets of double pulsed-laser-ablation. 展开更多
关键词 Collision of supersonic Jets Shock Wave Computational Fluid Dynamics Laser Ablation
下载PDF
Title Supersonic Condensation and Separation Characteristics of CO_(2)-Rich Natural Gas under Different Pressures
6
作者 Yong Zheng Lei Zhao +6 位作者 YujiangWang Feng Chang Weijia Dong Xinying Liu Yunfei Li Xiaohan Zhang Ziyuan Zhao 《Energy Engineering》 EI 2023年第2期529-540,共12页
Supersonic separation technology is a new natural gas sweetening method for the treatment of natural gas with high CO_(2)(carbon dioxide)content.The structures of the Laval nozzle and the supersonic separator were des... Supersonic separation technology is a new natural gas sweetening method for the treatment of natural gas with high CO_(2)(carbon dioxide)content.The structures of the Laval nozzle and the supersonic separator were designed,and the mathematical models of supersonic condensation and swirling separation for CO_(2)-CH4 mixture gas were established.The supersonic condensation characteristics of CO_(2) in natural gas and the separation characteristics of condensed droplets under different inlet pressures were studied.The results show that higher inlet pressure results in a larger droplet radius and higher liquid phase mass fraction;additionally,the influence of centrifugal force is more pronounced,and the separation efficiency and removal efficiency of CO_(2) are higher.When the inlet pressure is 6 and 9 MPa,the liquefaction efficiency at the Laval nozzle outlet increases from 56.90%to 79.97%,and the outlet droplet radius increases from 0.39 to 0.72μm,and the removal efficiency is 31.25%and 54.52%,respectively.The effects of inlet pressures on the removal efficiency of the supersonic separator are complicated and are controlled by the combined effects of liquefaction capacity of the nozzle and centrifugal separation capacity of the swirl vane. 展开更多
关键词 supersonic separator Laval nozzle natural gas carbon dioxide CONDENSATION separation
下载PDF
Local Solution of Three-Dimensional Axisymmetric Supersonic Flow in a Nozzle
7
作者 Shuai Wang 《Journal of Applied Mathematics and Physics》 2023年第4期1029-1035,共7页
In this paper, we construct a local supersonic flow in a 3-dimensional axis-symmetry nozzle when a uniform supersonic flow inserts the throat. We apply the local existence theory of boundary value problem for quasilin... In this paper, we construct a local supersonic flow in a 3-dimensional axis-symmetry nozzle when a uniform supersonic flow inserts the throat. We apply the local existence theory of boundary value problem for quasilinear hyperbolic system to solve this problem. The boundary value condition is set in particular to guarantee the character number condition. By this trick, the theory in quasilinear hyperbolic system can be employed to a large range of the boundary value problem. 展开更多
关键词 High-Dimensional Axisymmetric Hyperbolic Equations supersonic Flow in a Nozzle Local Solutions to Boundary Value Problems of Quasilinear Hyperbolic Equations
下载PDF
基于Supersonic的并行分组聚集
8
作者 张兵 孙辉 +3 位作者 范旭 李翠平 陈红 王雯 《计算机应用》 CSCD 北大核心 2016年第1期13-20,共8页
针对在分析型联机分析处理(OLAP)应用中频繁出现的数据密集型操作符——分组聚集耗时较多的问题,提出Cache友好的分组聚集算法对该操作进行性能优化。首先,为充分发挥列存储在数据密集型计算方面的优势,采用基于开源的列存储查询执行引... 针对在分析型联机分析处理(OLAP)应用中频繁出现的数据密集型操作符——分组聚集耗时较多的问题,提出Cache友好的分组聚集算法对该操作进行性能优化。首先,为充分发挥列存储在数据密集型计算方面的优势,采用基于开源的列存储查询执行引擎Supersonic,并在此之上设计Cache友好的分组聚集算法;其次,为加速查询的执行,使用并行技术,将单线程的分组聚集算法改为多线程并行的分组聚集算法。基于Supersonic设计并实现4种并行分组聚集算法:无共享Hash表并行分组聚集(NSHPGA)算法、表锁共享Hash表并行分组聚集(TLSHPGA)算法、桶锁共享Hash表并行分组聚集(BLSHPGA)算法、节点锁共享Hash表并行分组聚集(NLSHPGA)算法,且在不同的分组势集、不同的线程数的情况下,针对上述4种算法做了多组实验。通过对比3种不同粒度的共享Hash表并行分组聚集算法的加速比,得出NLSHPGA算法在加速比和并发度两方面表现最好,部分查询可达到10倍加速比;通过比较NSHPGA算法和NLSHPGA算法的加速比、Cache miss内存使用等情况,得出NLSHPGA算法在分组势集大于8时,加速比超过NSHPGA算法,并且Cache miss更低,使用的内存更少。 展开更多
关键词 并行分组聚集 supersonic 节点锁 列存储 cache友好
下载PDF
Performance characterization of Ni60-WC coating on steel processed with supersonic laser deposition 被引量:11
9
作者 Fang LUO Andrew COCKBURN +5 位作者 Martin SPARKES Rocco LUPOI Zhi-jun CHEN William O'NEILL Jian-hua YAO Rong LIU 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第1期35-47,共13页
Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as ... Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as supersonic laser deposition. In this study, Ni60-WC is deposited on low-carbon steel using SLD. The microstructure and performance of the coatings are investigated through SEM, optical microscopy, EDS, XRD, microhardness and pin-on-disc wear tests. The experimental results of the coating processed with the optimal parameters are compared to those of the coating deposited using laser cladding. 展开更多
关键词 Ni60-WC supersonic LASER DEPOSITION LASER CLADDING Microstructure WEAR
下载PDF
Supersonic Two-Dimensional Minimum Length Nozzle Design at High Temperature. Application for Air 被引量:5
10
作者 Toufik Zebbiche ZineEddine Youbi 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第1期29-39,共11页
When the stagnation temperature of a perfect gas increases, the specific heat ratio does not remain constant any more, and start to vary with this temperature. The gas remains perfect, its state equation remains alway... When the stagnation temperature of a perfect gas increases, the specific heat ratio does not remain constant any more, and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this work is to trace the profiles of the supersonic Minimum Length Nozzle with centered expansion when the stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules and to have for each exit Mach number several nozzles shapes by changing the value of the temperature. The method of characteristics is used with a new form of the Prandtl Meyer function at high temperature. The resolution of the obtained equations is done by the second order of fmite differences method by using the predictor corrector algorithm. A study on the error given by the perfect gas model compared to our model is presented. The comparison is made with a calorically perfect gas for goal to give a limit of application of this model. The application is for the air. 展开更多
关键词 supersonic flow minimum length nozzle calorically imperfect gas interpolation Prandtl Meyer function stretching function Simpson quadrature supersonic parameters conception method of characteristics
下载PDF
Supersonic swirling characteristics of natural gas in convergent-divergent nozzles 被引量:9
11
作者 Wen Chuang Cao Xuewen Yang Yan Zhang Jing 《Petroleum Science》 SCIE CAS CSCD 2011年第1期114-119,共6页
The supersonic nozzle is a new apparatus which can be used to condense and separate water and heavy hydrocarbons from natural gas.The swirling separation of natural gas in the convergent-divergent nozzle was numerical... The supersonic nozzle is a new apparatus which can be used to condense and separate water and heavy hydrocarbons from natural gas.The swirling separation of natural gas in the convergent-divergent nozzle was numerically simulated based on a new design which incorporates a central body. Axial distribution of the main parameters of gas flow was investigated,while the basic parameters of gas flow were obtained as functions of radius at the nozzle exit.The effect of the nozzle geometry on the swirling separation was analyzed.The numerical results show that water and heavy hydrocarbons can be condensed and separated from natural gas under the combined effect of the low temperature(-80℃) and the centrifugal field(482,400g,g is the acceleration of gravity).The gas dynamic parameters are uniformly distributed correspondingly in the radial central region of the channel,for example the distribution range of the static temperature and the centrifugal acceleration are from -80 to -55℃and 220,000g to 500,000g,respectively,which would create good conditions for the cyclone separation of the liquids.However,high gradients of gas dynamic parameters near the channel walls may impair the process of separation.The geometry of the nozzle has a great influence on the separation performance. Increasing the nozzle convergent angle can improve the separation efficiency.The swirling natural gas can be well separated when the divergent angle takes values from 4°to 12°in the convergent-divergent nozzle. 展开更多
关键词 Swirling flow convergent-divergent nozzle supersonic natural gas separation numerical calculation
下载PDF
Design and evaluation of a Laval-type supersonic atomizer for low-pressure gas atomization of molten metals 被引量:5
12
作者 Chao-run Si Xian-jie Zhang +1 位作者 Jun-biao Wang Yu-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第6期627-635,共9页
A Laval-type supersonic gas atomizer was designed for low-pressure gas atomization of molten metals. The principal design ob-jectives were to produce small-particle uniform powders at lower operating pressures by impr... A Laval-type supersonic gas atomizer was designed for low-pressure gas atomization of molten metals. The principal design ob-jectives were to produce small-particle uniform powders at lower operating pressures by improving the gas inlet and outlet structures and op-timizing structural parameters. A computational fluid flow model was developed to study the flow field characteristics of the designed atom-izer. Simulation results show that the maximum gas velocity in the atomization zone can reach 440 m&#183;s-1;this value is independent of the atomization gas pressure P0 when P0〉0.7 MPa. When P0=1.1 MPa, the aspiration pressure at the tip of the delivery tube reaches a mini-mum, indicating that the atomizer can attain the best atomization efficiency at a relatively low atomization pressure. In addition, atomization experiments with pure tin at P0=1.0 MPa and with 7055Al alloy at P0=0.8 and 0.4 MPa were conducted to evaluate the atomization capa-bility of the designed atomizer. Nearly spherical powders were obtained with the mass median diameters of 28.6, 43.4, and 63.5μm, respec-tively. Compared with commonly used atomizers, the designed Laval-type atomizer has a better low-pressure gas atomization capability. 展开更多
关键词 atomizers gas atomization supersonic flow simulation metal powders
下载PDF
Experimental Investigation of a Fixed-geometry Two-dimensional Mixed-compression Supersonic Inlet with Sweep-forward High- light and Bleed Slot in an Inverted "X"-type Layout 被引量:10
13
作者 Wan Dawei Guo Rongwei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第4期304-312,共9页
A fixed-geometry two-dimensional mixed-compression supersonic inlet with sweep-forward high-light and bleed slot in an inverted "X"-form layout was tested in a wind tunnel. Results indicate: (1) with increases of... A fixed-geometry two-dimensional mixed-compression supersonic inlet with sweep-forward high-light and bleed slot in an inverted "X"-form layout was tested in a wind tunnel. Results indicate: (1) with increases of the free stream Mach number, the total pressure recovery decreases, while the mass flow ratio increases to the maximum at the design point and then decreases; (2) when the angle of attack, a, is less than 6°, the total pressure recovery of both side inlets tends to decrease, but, on the lee side inlet, its values are higher than those on the windward side inlet, and the mass flow ratio on lee side inlet increases first and then falls, while on the windward side it keeps declining slowly with the sum of mass flow on both sides remaining almost constant; (3) with the attack angle, a, rising from 6° to 9°, both total pressure recovery and mass flow ratio on the lee side inlet fall quickly, but on the windward side inlet can be observed decreases in the total pressure recovery and increases in the mass flow ratio; (4) by comparing the velocity and back pressure characterristics of the inlet with a bleed slot to those of the inlet without, it stands to reason that the existence of a bleed slot has not only widened the steady working range of inlet, but also made an enormous improvement in its performance at high Mach numbers. Besides, this paper also presents an example to show how this type of inlet is designed. 展开更多
关键词 aerospace propulsion system supersonic inlet two-dimensional mixed-compression experimental investigation bleed slot "X"-type sweep-forward high-light
下载PDF
Instantaneous and time-averaged flow structures around a blunt double-cone with or without supersonic film cooling visualized via nano-tracer planar laser scattering 被引量:3
14
作者 朱杨柱 易仕和 +2 位作者 何霖 田立丰 周勇为 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期368-373,共6页
In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scatt... In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scattering (NPLS), which has a high spatiotemporal resolution. Three experimental cases with different injection mass flux rates were carried out. Many typical flow structures were clearly shown, such as shock waves, expansion fans, shear layers, mixing layers, and turbulent boundary layers. The analysis of two NPLS images with an interval of 5 us revealed the temporal evolution characteristics of flow structures. With matched pressures, the laminar length of the mixing layer was longer than that in the case with a larger mass flux rate, but the full covered region was shorter. Structures like K-H (Kelvin-Helmholtz) vortices were clearly seen in both flows. Without injection, the flow was similar to the supersonic flow over a backward- facing step, and the structures were relatively simpler, and there was a longer laminar region. Large scale structures such as hairpin vortices were visualized. In addition, the results were compared in part with the schlieren images captured by others under similar conditions. 展开更多
关键词 blunt cone supersonic flow structure flow visualization supersonic film cooling
下载PDF
STUDY OF MECHANISM OF BREAKDOWN IN LAMINARTURBULENT TRANSITION OF SUPERSONIC BOUNDARY LAYER ON FLAT PLATE 被引量:4
15
作者 曹伟 黄章峰 周恒 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第4期425-434,共10页
Spatial mode direct numerical simulation has been applied to study the mechanism of breakdown in laminar-turbulent transition of a supersonic boundary layer on a fiat plate with Mach number 4.5. Analysis of the result... Spatial mode direct numerical simulation has been applied to study the mechanism of breakdown in laminar-turbulent transition of a supersonic boundary layer on a fiat plate with Mach number 4.5. Analysis of the result showed that, during the breakdown process in laminar-turbulent transition, the mechanism causing the mean flow profile to evolve swiftly from laminar to turbulent was that the modification of mean flow profile by the disturbance, when they became larger, leads to remarkable change of its stability characteristics. Though the most unstable T-S wave was of second mode for laminar flow, the first mode waves played the key role in the breakdown process in laminar-turbulent transition. 展开更多
关键词 supersonic boundary layer TRANSITION BREAKDOWN spatial mode
下载PDF
Performance of supersonic model combustors with staged injections of supercritical aviation kerosene 被引量:4
16
作者 Feng-Quan Zhong Xue-Jun Fan +2 位作者 Gong Yu Jian-Guo Li Chih-Jen Sung 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第5期661-668,共8页
Supersonic model combustors using two-stage injections of supercritical kerosene were experimentally investigated in both Mach 2.5 and 3.0 model combustors with stagnation temperatures of approximately 1,750 K. Superc... Supersonic model combustors using two-stage injections of supercritical kerosene were experimentally investigated in both Mach 2.5 and 3.0 model combustors with stagnation temperatures of approximately 1,750 K. Supercritical kerosene of approximately 760 K was prepared and injected in the overall equivalence ratio range of 0.5-1.46. Two pairs of integrated injector/flameholder cavity modules in tandem were used to facilitate fuel-air mixing and stable combustion. For single-stage fuel injection at an upstream location, it was found that the boundary layer separation could propagate into the isolator with increasing fuel equivalence ratio due to excessive local heat release, which in turns changed the entry airflow conditions. Moving the fuel injection to a further downstream location could alleviate the problem, while it would result in a decrease in combustion efficiency due to shorter fuel residence time. With two-stage fuel injections the overall combustor performance was shown to be improved and kerosene injections at fuel rich conditions could be reached without the upstream propagation of the boundary layer separation into the isolator. Furthermore, effects of the entry Mach number and pilot hydrogen on combustion performance were also studied. 展开更多
关键词 supersonic combustion Staged injection Combustion efficiency Supercritical kerosene
下载PDF
Experimental investigations of detonation initiation by hot jets in supersonic premixed flows 被引量:4
17
作者 韩旭 周进 林志勇 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期305-309,共5页
A new method to initiate and sustain the detonation in supersonic flow is investigated. The reaction activity of coming flow may influence the result of detonation initiation. When a hot jet initiates a detonation wav... A new method to initiate and sustain the detonation in supersonic flow is investigated. The reaction activity of coming flow may influence the result of detonation initiation. When a hot jet initiates a detonation wave successfully, there may exist two types of detonations. If the detonation velocity is greater than the velocity of coming flow, there will be a normal detonation here. Because of the influence of boundary layer separation, the upstream detonation velocity is much greater than the Chapman-Jouguet (C J) detonation velocity. On the other hand, if the detonation velocity is less than the velocity of coming flow, an oblique detonation wave (ODW) will form. The ODW needs a continuous hot jet to sustain itself. If the jet pressure is lower than a certain value, the ODW will decouple. In contrast, the normal detonation wave can sustain itself without the hot jet. 展开更多
关键词 hot jet DETONATION supersonic flow
下载PDF
CHAOTIC MOTIONS AND LIMIT CYCLE FLUTTER OF TWO-DIMENSIONAL WING IN SUPERSONIC FLOW 被引量:4
18
作者 Guoyong Zheng Yiren Yang 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第5期441-448,共8页
Based on the piston theory of supersonic flow and the energy method, the flutter motion equations of a two-dimensional wing with cubic stiffness in the pitching direction are established. The aeroelastic system contai... Based on the piston theory of supersonic flow and the energy method, the flutter motion equations of a two-dimensional wing with cubic stiffness in the pitching direction are established. The aeroelastic system contains both structural and aerodynamic nonlinearities. Hopf bifurcation theory is used to analyze the flutter speed of the system. The effects of system parameters on the flutter speed are studied. The 4th order Runge-Kutta method is used to calculate the stable limit cycle responses and chaotic motions of the aeroelastic system. Results show that the number and the stability of equilibrium points of the system vary with the increase of flow speed. Besides the simple limit cycle response of period 1, there are also period-doubling responses and chaotic motions in the flutter system. The route leading to chaos in the aeroelastic model used here is the period-doubling bifurcation. The chaotic motions in the system occur only when the flow speed is higher than the linear divergent speed and the initial condition is very small. Moreover, the flow speed regions in which the system behaves chaos axe very narrow. 展开更多
关键词 supersonic flow NONLINEARITY CHAOS limit cycle flutter two-dimensional wing
下载PDF
Effect of Stagnation Temperature on the Supersonic Two-Dimensional Plug Nozzle Conception. Application for Air 被引量:2
19
作者 Toufik Zebbiche ZineEddine Youbi 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第1期15-28,共14页
When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect, its state equation remai... When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this research is to trace the profiles of the supersonic plug nozzle when this stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules, by using the new formula of the Prandtl Meyer function, and to have for each exit Mach number, several nozzles shapes by changing the value of this temperature. A study on the error given by the PG (perfect gas) model compared to our model at high temperature is presented. The comparison is made with the case of a calorically perfect gas aiming to give a limit of application of this model. The application is for the air. 展开更多
关键词 supersonic flow plug nozzle calorically imperfect gas interpolation Prandtl Meyer functiom stretching fimction Simpson quadrature supersonic parameters conception.
下载PDF
Mode transition and oscillation suppression in supersonic cavity flow 被引量:3
20
作者 Chao ZHANG Zhenhua WAN Dejun SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第7期941-956,共16页
Supersonic flows past two-dimensional cavities with/without control are investigated by the direct numerical simulation (DNS). For an uncontrolled cavity, as the thickness of the boundary layer declines, transition ... Supersonic flows past two-dimensional cavities with/without control are investigated by the direct numerical simulation (DNS). For an uncontrolled cavity, as the thickness of the boundary layer declines, transition of the dominant mode from the steady mode to the Rossiter Ⅱ mode and then to the Rossiter III mode is observed due to the change of vortex-corner interactions. Meanwhile, a low frequency mode appears. However, the wake mode observed in a subsonic cavity flow is absent in the current simulation. The oscillation frequencies obtained from a global dynamic mode decomposition (DMD) approach are consistent with the local power spectral density (PSD) analysis. The dominant mode transition is clearly shown by the dynamic modes obtained from the DMD. A passive control technique of substituting the cavity trailing edge with a quarter-circle is studied. As the effective cavity length increases, the dominant mode transition from the Rossiter Ⅱ mode to the Rossiter Ⅲ mode occurs. With the control, the pressure oscillations are reduced significantly. The interaction of the shear layer and the recirculation zone is greatly weakened, combined with weaker shear layer instability, responsible for the suppression of pressure oscillations. Moreover, active control using steady subsonic mass injection upstream of a cavity leading edge can stabilize the flow. 展开更多
关键词 supersonic cavity flow pressure oscillation mode transition vortex-corner interaction
下载PDF
上一页 1 2 195 下一页 到第
使用帮助 返回顶部