期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effect of Martian atmosphere on aerodynamic performance of supersonic parachute two-body systems 被引量:4
1
作者 Xiaopeng XUE He JIA +2 位作者 Wei RONG Qi WANG Chih-yung WEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第4期45-54,共10页
Supersonic flows around parachute two-body systems are numerically investigated by solving the compressible Navier-Stokes equations. In the present study, both rigid and flexible parachute models are considered, which... Supersonic flows around parachute two-body systems are numerically investigated by solving the compressible Navier-Stokes equations. In the present study, both rigid and flexible parachute models are considered, which comprise a capsule and a canopy. The objective of the present study is to investigate the effects of the Martian atmosphere on the unsteady flows produced by these parachute two-body models and the structural behavior of the flexible canopy. It was found that in the Martian atmosphere, the supersonic rigid parachutes with shorter trailing distances exhibited weaker aerodynamic interactions between the capsule wake and canopy shock, resulting in a smaller pressure distribution on the typical surfaces of the canopy. By contrast, because the flow modes around the flexible parachute in the Martian atmosphere were similar to those of the rigid parachute under the air conditions of the wind tunnel tests, the canopy shape was almost unchanged. When a new canopy material was designed by decreasing the Young’s modulus and damping coefficient, an area oscillation phenomenon was observed in the flexible parachute with a trailing distance of 10 in the Martian atmosphere. Consequently, the Martian atmosphere(low density and pressure) has a significant effect on the aerodynamic performance of the flexible parachute system. 展开更多
关键词 Canopy flexibility Fluid structure interaction Martian atmosphere supersonic parachute Unsteady flow
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部