The major purpose of this paper is to numerically study the complex structure of vortex system occurring within transonic turbine cascade. The transonic viscous flow in turbine cascade is simulated by solving full 3D ...The major purpose of this paper is to numerically study the complex structure of vortex system occurring within transonic turbine cascade. The transonic viscous flow in turbine cascade is simulated by solving full 3D Reynolds average N S equations, and then detailed analyses of vortex system structure are presented. Under guidance of topology, the wall limiting streamlines are employed to reveal the flow structure near the wall, and an analysis of space streamlines and cross section streamlines is given for the investigation of flow structure in the flow field. Through the analysis, the formation and evolution of the vortex system and the whole process of separation occurring within this turbine cascade are revealed展开更多
The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(int...The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(interferometry and schlieren method) and pneumatic measurements provide more information about the behaviour and nature of basic phenomena occurring in the profile cascade flow field. The numerical simulation was carried out by means of the EARSM turbulence model according to Hellsten [5] completed by the bypass transition model with the algebraic equation for the intermittency coefficient proposed by Straka and P?íhoda [6] and implemented into the in-house numerical code. The investigation was focused particularly on the effect of shock waves on the shear layer development including the laminar/turbulent transition. Interactions of shock waves with shear layers on both sides of the blade result usually in the transition in attached and/ or separated flow and so to the considerable impact to the flow structure and energy losses in the blade cascade.展开更多
文摘The major purpose of this paper is to numerically study the complex structure of vortex system occurring within transonic turbine cascade. The transonic viscous flow in turbine cascade is simulated by solving full 3D Reynolds average N S equations, and then detailed analyses of vortex system structure are presented. Under guidance of topology, the wall limiting streamlines are employed to reveal the flow structure near the wall, and an analysis of space streamlines and cross section streamlines is given for the investigation of flow structure in the flow field. Through the analysis, the formation and evolution of the vortex system and the whole process of separation occurring within this turbine cascade are revealed
基金supported by the Technology Agency of the Czech Republic under the grant TA03020277by the Czech Science Foundation under grant P101/12/1271
文摘The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(interferometry and schlieren method) and pneumatic measurements provide more information about the behaviour and nature of basic phenomena occurring in the profile cascade flow field. The numerical simulation was carried out by means of the EARSM turbulence model according to Hellsten [5] completed by the bypass transition model with the algebraic equation for the intermittency coefficient proposed by Straka and P?íhoda [6] and implemented into the in-house numerical code. The investigation was focused particularly on the effect of shock waves on the shear layer development including the laminar/turbulent transition. Interactions of shock waves with shear layers on both sides of the blade result usually in the transition in attached and/ or separated flow and so to the considerable impact to the flow structure and energy losses in the blade cascade.