Triboelectric nanogenerator(TENG)is an emerging method for harvesting mechanical energy.In traditional rotary TENGs(RTENGs),the mutual friction between positive and negative friction materials significantly shortens t...Triboelectric nanogenerator(TENG)is an emerging method for harvesting mechanical energy.In traditional rotary TENGs(RTENGs),the mutual friction between positive and negative friction materials significantly shortens their operational lifespan.The non-contact triboelectric nanogenerator addresses this issue effectively;however,its low output performance still limits practical applications.In this work,we introduce a novel charge supplementation strategy to enhance the performance of NCRTENGs.This strategy involves directly affixing wool between the Cu electrodes of the NCR-TENG,while the negative friction material is modified by doping with MXene,resulting in a substantial enhancement of output.The voltage,current,and charge transfer increased by 4.5,4.5,and 4.8 times,respectively,reaching 451 V,21.2μA and 47 nC.Furthermore,NCR-TENG demonstrates remarkable stability,maintaining 100%output characteristics after 33,600 cycles.The output power reaches2.3 mW when load resistance is 107Ω.It takes only 0.8 s to charge a 0.1μF capacitor to 10 V.This work not only improves the output performance of the NCR-TENG but also retains the capability of low-speed startup while maintaining high wear resistance.The simple and effective charge supplementation strategy proposed here provides a new perspective for further improving the output characteristics of NCR-TENGs.NCR-TENG has potential application prospects in harvesting wind energy to power traffic flow sensor networks,detecting environmental and vehicle information,and optimizing traffic signal control.展开更多
The development of automation industry is inseparable from the progress of sensing technology.As a promising self-powered sensing technology,the durability and stability of triboelectric sensor(TES)have always been in...The development of automation industry is inseparable from the progress of sensing technology.As a promising self-powered sensing technology,the durability and stability of triboelectric sensor(TES)have always been inevitable challenges.Herein,a continuous charge supplement(CCS)strategy and an adaptive signal processing(ASP)method are proposed to improve the lifetime and robustness of TES.The CCS uses low friction brushes to increase the surface charge density of the dielectric,ensuring the reliability of sensing.A triboelectric mechanical motion sensor(TMMS)with CCS is designed,and its electrical signal is hardly attenuated after 1.5 million cycles after reasonable parameter optimization,which is unprecedented in linear TESs.After that,the dynamic characteristics of the CCS-TMMS are analyzed with error rates of less than 1%and 2%for displacement and velocity,respectively,and a signal-to-noise ratio of more than 35 dB.Also,the ASP used a signal conditioning circuit for impedance matching and analog-to-digital conversion to achieve a stable output of digital signals,while the integrated design and manufacture of each hardware module is achieved.Finally,an intelligent logistics transmission system(ILTS)capable of wirelessly monitoring multiple motion parameters is developed.This work is expected to contribute to automation industries such as smart factories and unmanned warehousing.展开更多
基金supported by the Natural Science Foundation for Young Scientists of Shanxi Province(Grant No.202203021212127)。
文摘Triboelectric nanogenerator(TENG)is an emerging method for harvesting mechanical energy.In traditional rotary TENGs(RTENGs),the mutual friction between positive and negative friction materials significantly shortens their operational lifespan.The non-contact triboelectric nanogenerator addresses this issue effectively;however,its low output performance still limits practical applications.In this work,we introduce a novel charge supplementation strategy to enhance the performance of NCRTENGs.This strategy involves directly affixing wool between the Cu electrodes of the NCR-TENG,while the negative friction material is modified by doping with MXene,resulting in a substantial enhancement of output.The voltage,current,and charge transfer increased by 4.5,4.5,and 4.8 times,respectively,reaching 451 V,21.2μA and 47 nC.Furthermore,NCR-TENG demonstrates remarkable stability,maintaining 100%output characteristics after 33,600 cycles.The output power reaches2.3 mW when load resistance is 107Ω.It takes only 0.8 s to charge a 0.1μF capacitor to 10 V.This work not only improves the output performance of the NCR-TENG but also retains the capability of low-speed startup while maintaining high wear resistance.The simple and effective charge supplementation strategy proposed here provides a new perspective for further improving the output characteristics of NCR-TENGs.NCR-TENG has potential application prospects in harvesting wind energy to power traffic flow sensor networks,detecting environmental and vehicle information,and optimizing traffic signal control.
基金The authors are grateful for the support received from the National Key R&D Project from the Minister of Science and Technology(Nos.2021YFA1201601 and 2021YFA1201604)the Open Research Project Programme of the State Key Laboratory of Internet of Things for Smart City(University of Macao)(No.SKL-IoTSC(UM)-2021-2023/ORPF/A17/2022).
文摘The development of automation industry is inseparable from the progress of sensing technology.As a promising self-powered sensing technology,the durability and stability of triboelectric sensor(TES)have always been inevitable challenges.Herein,a continuous charge supplement(CCS)strategy and an adaptive signal processing(ASP)method are proposed to improve the lifetime and robustness of TES.The CCS uses low friction brushes to increase the surface charge density of the dielectric,ensuring the reliability of sensing.A triboelectric mechanical motion sensor(TMMS)with CCS is designed,and its electrical signal is hardly attenuated after 1.5 million cycles after reasonable parameter optimization,which is unprecedented in linear TESs.After that,the dynamic characteristics of the CCS-TMMS are analyzed with error rates of less than 1%and 2%for displacement and velocity,respectively,and a signal-to-noise ratio of more than 35 dB.Also,the ASP used a signal conditioning circuit for impedance matching and analog-to-digital conversion to achieve a stable output of digital signals,while the integrated design and manufacture of each hardware module is achieved.Finally,an intelligent logistics transmission system(ILTS)capable of wirelessly monitoring multiple motion parameters is developed.This work is expected to contribute to automation industries such as smart factories and unmanned warehousing.