The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified ra...The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink.展开更多
This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti...This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.展开更多
Heat engines based on reciprocating machines remain in demand as energy converters in a variety of industries around the world.The aim of the study was to evaluate the gas-dynamic,consumable and heat exchange characte...Heat engines based on reciprocating machines remain in demand as energy converters in a variety of industries around the world.The aim of the study was to evaluate the gas-dynamic,consumable and heat exchange characteristics of non-stationary air flows in a supply system with transverse profiling of valve channels based on experimental studies.Valve channels with cross sections in the form of a circle,square and triangle were used to control the consumable and heat exchange characteristics of the flows in the supply system of the reciprocatingengine model.The article presents data on changes in local velocity,volumetric airflow and instantaneous heat transfer coefficient of non-stationary airflow in supply systems with different valve channel designs.A spectral analysis of the pulsations of the local heat transfer coefficient was also performed.The Nusselt number was calculated for the studied supply systems.The figured valve channels lead to an increase in the volumetric airflow through the supply systemupto32%comparedwiththe basic configuration.The useof a square valve channel leads to suppression of heat transfer(drop is about 15%)compared to the basic supply system,and the use of a triangular valve channel causes an intensification of heat transfer(growth is about 17.5%).The obtained data can be useful for refining mathematical models,adjusting machine learning algorithms,and improving design methods for supply systems of reciprocating machines to improve their technical,economic,and environmental characteristics.展开更多
Due to the rapid progress of information technology, organizations anticipate significant changes in the planning, scheduling, and optimization aspects of operation and supply chain management (SCM) shortly. Two prima...Due to the rapid progress of information technology, organizations anticipate significant changes in the planning, scheduling, and optimization aspects of operation and supply chain management (SCM) shortly. Two primary types of risk have an impact on supply chain management and design. The first group deals with the difficulties in matching supply and demand, whereas the second group deals with disruptions to regular business operations. The essay offers a theoretical framework that combines the cooperative efforts of risk assessment and mitigation, which are critical for effectively handling potential supply chain interruptions. This content provides insightful viewpoints on the strategic resources and operational structure needed to improve organizational success. We utilized the partial least squares (PLS) method to address the problem of multicollinearity and measurement mistakes in examining cause-and-effect constructs. The statistical method, Least Squares (PLS), used in structural equation modeling, is based on partial variance. The Partial Least Squares (PLS) strategy uses a two-stage estimate procedure to calculate weights, loadings, and route estimations. Initially, several simple and complex regressions were performed with the provided model. The procedure was repeated until a solution was found, resulting in a set of weights used to determine the latent variable scores. In the second step, non-iterative PLS regression yields loadings, path coefficients, mean scores, and location parameters. According to the structural study, implementing Sustainable Supply Chain Management (SSCM) can significantly improve a business’s operational and financial performance. The findings offer a comprehensive understanding of several elements of supply chain management (SSCM), including information systems, organizational configurations, supply chain network architecture (SCND), and supply chain strategy (SCS). The supply chain is essential for effectively moving goods over great distances and encouraging cooperation between parties. Therefore, these connections are established precisely, quickly, and cheaply via a knowledgeable and efficient supply chain. Two key components are necessary for a supply chain (SC) to be successful: efficient collaboration and the smooth integration of information-sharing platforms.展开更多
A systematic perspective on agricultural supply chain finance can offer fresh insights into its development.The high-quality development of the agricultural supply chain finance ecosystem is crucial for the comprehens...A systematic perspective on agricultural supply chain finance can offer fresh insights into its development.The high-quality development of the agricultural supply chain finance ecosystem is crucial for the comprehensive revitalization of rural areas and the realization of agricultural power.Based on the current state of development of this ecosystem,this paper identifies several bottlenecks,such as insufficient policy and technical support in the macro-environment system,weak incentives for independent circulation within the industrial environment system,and inadequate motivation for stakeholders to participate in the micro-environment system.To address these issues,this paper proposes that the visualization,digitalization,and authenticity characteristics of the“blockchain+Internet of Things”technology architecture can effectively resolve these bottlenecks.Additionally,targeted strategies are suggested to promote the high-quality development of the agricultural supply chain finance ecosystem.展开更多
[Objective] The paper is to construct the logistics tracking management system of tropical agricultural products based on supply chain.[Method] With tropical agricultural products in Hainan as study object,based on lo...[Objective] The paper is to construct the logistics tracking management system of tropical agricultural products based on supply chain.[Method] With tropical agricultural products in Hainan as study object,based on logistics supply chain files and electronic tag coding of agricultural products,cold chain temperature and humidity monitoring,vehicle transportation positioning,data exchange of XML Web services and role-based permission dynamic allocation,the multi-level multi-permission and multi-role logistics tracking management system of tropical agricultural products has been established.[Result] The system constructs information exchange platform for various links of logistics supply chain of tropical agricultural products,which realizes the entire quality monitoring and information tracing of agricultural products,thus enhancing the competitiveness of supply chain in company.[Conclusion] The system has good application and extension prospect.展开更多
To study the draft sensation distribution of an air jet supply system in a large space building in summer,experiments are conducted in a large laboratory.The temperature,velocity and draft sensation distributions at a...To study the draft sensation distribution of an air jet supply system in a large space building in summer,experiments are conducted in a large laboratory.The temperature,velocity and draft sensation distributions at a nozzle height of 4 m in the occupied zone are obtained.Then,the numerical simulation under the test condition is carried out by the computational fluid dynamics(CFD)method.The calculation results of the indoor vertical temperature and the draft sensation distribution are validated by the test data.Simulations with different nozzle heights are conducted.The satisfactory air supply condition is determined by analyzing the draft sensations and the temperatures in the occupied zone under three conditions.The simulation results show that the optimal draft sensation distribution and the uniform temperature and velocity fields can be obtained at a nozzle height of 5 m.展开更多
In this research, LINGO is used successfully to solve the water supply system′s optimal operation model. Firstly, the language of LINGO and the using method were studied intensively, on the basis of which the model w...In this research, LINGO is used successfully to solve the water supply system′s optimal operation model. Firstly, the language of LINGO and the using method were studied intensively, on the basis of which the model was transformed to LINGO form and solved successfully. Secondly, the research on the interface between LINGO and the popular office software was made. The optimization software was developed, which had Excel as the workspace and LINGO as the core of computation. Through practice, this software was found stable, easy to use and suitable for the application to the water supply corporations.展开更多
As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal...As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.展开更多
Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified ...Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.展开更多
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw...In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.展开更多
In view of the poor water supply system’s network properties, the system’s complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow ...In view of the poor water supply system’s network properties, the system’s complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow and water source head. By using pump-station pressure head and initial tank water levels as decision variables, the model of optimal allocation of water supply between pump-sources was developed. Genetic algorithm was introduced to deal with the model of optimal allocation of water supply. Methods for handling each constraint condition were put forward, and overcome the shortcoming such as premature convergence of genetic algorithm; a solving method was brought forward in which genetic algorithm was combined with simulated annealing technology and self-adaptive crossover and mutation probabilities were adopted. An application example showed the feasibility of this algorithm.展开更多
The relationship between the supply and demand for ecosystem services(ESs)is a key issue for the rational allocation of natural resources and optimisation of sustainable development capacity.This paper investigateed t...The relationship between the supply and demand for ecosystem services(ESs)is a key issue for the rational allocation of natural resources and optimisation of sustainable development capacity.This paper investigateed the dynamic evolution features of supply and demand of four ESs in Lanzhou of China,namely,water supply,food supply,carbon fixation and soil retention services.The crosssectional data of 2005 and 2017 were used for calculating ESs value and its supply and demand through ArcGIS software,InVEST model,elastic coefficient model and coupling coordination model.Results showed that:1)from 2005 to 2017,the supply of water supply services increased,the demand of soil retention services decreased,and the supply and demand of food supply and carbon fixation services increased.The high-value areas of service supply were mainly distributed in the rocky mountain areas in the southeast and northwest with high vegetation coverage,while the high-value areas of demand were mainly distributed in the urban areas and surrounding areas with high population density.2)There were five different types of coupling relations.Water supply service was dominated by a negative coupling type D,which means that the decrease in demand for ESs has had a positive response on the supply of ESs.Negative coupling type C was the main type of food supply and carbon fixation services,which means that the increase in demand for ESs has had a negative response on the supply of ESs.All three services were supplemented by a positive coupling type A,which means that the increase in demand for ESs has had a positive response on the supply of ESs.Soil retention service generally exhibits a positive coupling type B,which means that the decrease in demand for ESs has had a negative response on the supply of ESs.3)Over the past 12 yr,the coordination degree of supply and demand of water supply,food supply and soil retention services decreased,and the coordination degree of carbon fixation service increased.Various types of ES had a low degree of coupling and coordination,showing different characteristics of temporal and spatial evolution.The areas with imbalanced ESs supply and demand were mainly distributed in urban areas dominated by construction land.The research results are valuable to the optimisation of urban and rural ecological environments and the sustainable development of territory space under the framework of ecological civilisation,including similar ecologically vulnerable areas in other developing countries.展开更多
Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system....Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system. A dynamic optimization model of the supply chain is developed. It has achieved optimal system profit under conditions guaranteeing a certain level of customer satisfaction. Applying this model to coal production of the Xuzhou coal mines allows recommendations for a more systematic use of washing and processing,transportation and sale resources for commercial coal production to be made. The results show that this model,which is scientific and effective,has an important value for making reasonable decisions related to complex coal enterprises.展开更多
The power supply system of ion source for the Neutral Beam Injector (NBI) in the HT-7 superconducting tokamak is based on a single injector with one ion source that can deliver 700 kW of neutral beam power. Experiment...The power supply system of ion source for the Neutral Beam Injector (NBI) in the HT-7 superconducting tokamak is based on a single injector with one ion source that can deliver 700 kW of neutral beam power. Experiments and a discharges test on the ion source were successfully performed. In this paper, the circuit structures and features of every power supply are described and the results of the discharges test are presented.展开更多
Due to pollution in second water supply system (SWSS),nine renovation alternative plans were proposed and com-prehensive evaluations of different plan based on Analytical Hierarchy Process (AHP) were presented in this...Due to pollution in second water supply system (SWSS),nine renovation alternative plans were proposed and com-prehensive evaluations of different plan based on Analytical Hierarchy Process (AHP) were presented in this paper. Comparisons of advantages and disadvantages among the plans of SWSS renovations provided solid foundation for selecting the most appro-priate plan for engineering projects. In addition,a mathematical model of the optimal combination of renovation plans has been set up and software Lingo was used to solve the model. As a case study,the paper analyzed 15 buildings in Tianjin City. After simulation of the SWSS renovation system,an optimal scheme was obtained,the result of which indicates that 10 out of those 15 buildings need be renovated in priority. The renovation plans selected for each building are the ones ranked higher in the com-prehensive analysis. The analysis revealed that the optimal scheme,compared with two other randomly calculated ones,increased the percentage of service population by 19.6% and 13.6% respectively,which significantly improved social and economical benefits.展开更多
The thermal stratification level of low sidewall air supply system in large space was defined. Depending on the experiment of low sidewall air supply in summer 2008,the thermal stratification level was studied by simu...The thermal stratification level of low sidewall air supply system in large space was defined. Depending on the experiment of low sidewall air supply in summer 2008,the thermal stratification level was studied by simulation. Based on the simulation of experiment condition,the air velocity and vertical temperature distribution in a large space were simulated at different air-outlet velocities,and then the thermal stratification level line was obtained. The simulation results well match with the experimental ones and the average relative error is 3.4%. The thermal stratification level is heightened by increasing the air-outlet velocity with low sidewall air supply mode. It is concluded that when air-outlet velocity is 0.29 m/s,which is the experimental case,a uniform thermal environment in the higher occupied zone and a stable stratification level are formed. When the air-outlet velocity is low,such as 0.05 m/s,the thermal stratification level is too low and the air velocity is too small to meet the human thermal comfort in the occupied zone. So,it would be reasonable that the air-outlet velocity may be designed as 0.31 m/s if the height of the occupied zone is 2 m.展开更多
For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention....For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.展开更多
A circular and sustainable economy for the private transport sector requires a holistic view of the emitted CO_(2) emissions.Looking at the energy supplied to the vehicle in terms of a circular economy leads to defoss...A circular and sustainable economy for the private transport sector requires a holistic view of the emitted CO_(2) emissions.Looking at the energy supplied to the vehicle in terms of a circular economy leads to defossilisation.The remaining energy sources or forms are renewable electric energy,green hydrogen and renewable fuels.A holistic view of the CO_(2) emissions of these energy sources and forms and the resulting powertrain technologies must take into account all cradle-to-grave emissions for both the vehicle and the energy supply.In order to compare the different forms of energy,the three most relevant forms of powertrain technology are considered and a configuration is chosen that allows for an appropriate comparison.For this purpose,data from the FVV project“Powertrain 2040”are used[1]and combined with research data on the energy supply chain for passenger cars.The three comparable powertrain configurations are a battery electric vehicle,a fuel cell electric vehicle and an internal combustion engine hybrid vehicle fueled with electric fuel.First,the three selected powertrain configurations are presented in terms of their performance,weight,technology and other characteristics.A comparative analysis is carried out for different CO_(2) emissions of the electricity mix.The electricity mix is used for both the production of the vehicle and the energy.The results are presented in the form of cradle-to-wheel emissions,which consider the total CO_(2) emissions of the vehicle over its life cycle.Finally,the results are analyzed and discussed to determine which powertrain technology fits best into which energy sector CO_(2) emissions window.展开更多
This study delves into the formation dynamics of alliances within a closed-loop supply chain(CLSC)that encom-passes a manufacturer,a retailer,and an e-commerce platform.It leverages Stackelberg game for this explorati...This study delves into the formation dynamics of alliances within a closed-loop supply chain(CLSC)that encom-passes a manufacturer,a retailer,and an e-commerce platform.It leverages Stackelberg game for this exploration,contrasting the equilibrium outcomes of a non-alliance model with those of three differentiated alliance models.The non-alliance model acts as a crucial benchmark,enabling the evaluation of the motivations for various supply chain entities to engage in alliance formations.Our analysis is centered on identifying the most effective alliance strategies and establishing a coordination within these partnerships.We thoroughly investigate the consequences of diverse alliance behaviors,bidirectional free-riding and cost-sharing,and the resultant effects on the optimal decision-making among supply chain actors.The findings underscore several pivotal insights:(1)The behavior of alliances within the supply chain exerts variable impacts on the optimal pricing and demand of its members.In comparison to the non-alliance(D)model,the manufacturer-retailer(MR)and manufacturer-e-commerce platform(ME)alliances significantly lower both offline and online resale prices for new and remanufactured goods.This adjustment leads to an enhanced demand for products via the MR alliance’s offline outlets and the ME alliance’s online platforms,thereby augmenting the profits for those within the alliance.Conversely,retailer-e-commerce platform(ER)alliance tends to increase the optimal retail price and demand across both online and offline channels.Under specific conditions,alliance behavior can also increase the profits of non-alliance members,and the profits derived through alliance channels also exceed those from non-alliance channels.(2)The prevalence of bidirectional free-riding behavior largely remains constant across different alliance configurations.Across these models,bidirectional free-riding typically elevates the equilibrium prices in offline channel while negatively affecting the equilibrium prices in other channel.(3)The effect of cost-sharing shows relative uniformity across the various alliance models.Across all configurations,cost-sharing tends to reduce the manufacturer’s profits.Nonetheless,alliances initiated by the manufacturer can counteract these negative impacts,providing a strategic pathway to bolster CLSC profitability.展开更多
基金This work was supported by the Applied Basic Research Program of Science and Technology Plan Project of Sichuan Province of China(No.2020YJ0252).
文摘The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink.
基金supported by the National Natural Science Foundation of China(51767012)Curriculum Ideological and Political Connotation Construction Project of Kunming University of Science and Technology(2021KS009)Kunming University of Science and Technology Online Open Course(MOOC)Construction Project(202107).
文摘This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.
基金supported by the Russian Science Foundation(Grant No.23-29-00022).
文摘Heat engines based on reciprocating machines remain in demand as energy converters in a variety of industries around the world.The aim of the study was to evaluate the gas-dynamic,consumable and heat exchange characteristics of non-stationary air flows in a supply system with transverse profiling of valve channels based on experimental studies.Valve channels with cross sections in the form of a circle,square and triangle were used to control the consumable and heat exchange characteristics of the flows in the supply system of the reciprocatingengine model.The article presents data on changes in local velocity,volumetric airflow and instantaneous heat transfer coefficient of non-stationary airflow in supply systems with different valve channel designs.A spectral analysis of the pulsations of the local heat transfer coefficient was also performed.The Nusselt number was calculated for the studied supply systems.The figured valve channels lead to an increase in the volumetric airflow through the supply systemupto32%comparedwiththe basic configuration.The useof a square valve channel leads to suppression of heat transfer(drop is about 15%)compared to the basic supply system,and the use of a triangular valve channel causes an intensification of heat transfer(growth is about 17.5%).The obtained data can be useful for refining mathematical models,adjusting machine learning algorithms,and improving design methods for supply systems of reciprocating machines to improve their technical,economic,and environmental characteristics.
文摘Due to the rapid progress of information technology, organizations anticipate significant changes in the planning, scheduling, and optimization aspects of operation and supply chain management (SCM) shortly. Two primary types of risk have an impact on supply chain management and design. The first group deals with the difficulties in matching supply and demand, whereas the second group deals with disruptions to regular business operations. The essay offers a theoretical framework that combines the cooperative efforts of risk assessment and mitigation, which are critical for effectively handling potential supply chain interruptions. This content provides insightful viewpoints on the strategic resources and operational structure needed to improve organizational success. We utilized the partial least squares (PLS) method to address the problem of multicollinearity and measurement mistakes in examining cause-and-effect constructs. The statistical method, Least Squares (PLS), used in structural equation modeling, is based on partial variance. The Partial Least Squares (PLS) strategy uses a two-stage estimate procedure to calculate weights, loadings, and route estimations. Initially, several simple and complex regressions were performed with the provided model. The procedure was repeated until a solution was found, resulting in a set of weights used to determine the latent variable scores. In the second step, non-iterative PLS regression yields loadings, path coefficients, mean scores, and location parameters. According to the structural study, implementing Sustainable Supply Chain Management (SSCM) can significantly improve a business’s operational and financial performance. The findings offer a comprehensive understanding of several elements of supply chain management (SSCM), including information systems, organizational configurations, supply chain network architecture (SCND), and supply chain strategy (SCS). The supply chain is essential for effectively moving goods over great distances and encouraging cooperation between parties. Therefore, these connections are established precisely, quickly, and cheaply via a knowledgeable and efficient supply chain. Two key components are necessary for a supply chain (SC) to be successful: efficient collaboration and the smooth integration of information-sharing platforms.
基金Phased Research Results of the Scientific Research Project of Jilin Provincial Department of Education 2024(Project No.JJKH20240264SK)。
文摘A systematic perspective on agricultural supply chain finance can offer fresh insights into its development.The high-quality development of the agricultural supply chain finance ecosystem is crucial for the comprehensive revitalization of rural areas and the realization of agricultural power.Based on the current state of development of this ecosystem,this paper identifies several bottlenecks,such as insufficient policy and technical support in the macro-environment system,weak incentives for independent circulation within the industrial environment system,and inadequate motivation for stakeholders to participate in the micro-environment system.To address these issues,this paper proposes that the visualization,digitalization,and authenticity characteristics of the“blockchain+Internet of Things”technology architecture can effectively resolve these bottlenecks.Additionally,targeted strategies are suggested to promote the high-quality development of the agricultural supply chain finance ecosystem.
文摘[Objective] The paper is to construct the logistics tracking management system of tropical agricultural products based on supply chain.[Method] With tropical agricultural products in Hainan as study object,based on logistics supply chain files and electronic tag coding of agricultural products,cold chain temperature and humidity monitoring,vehicle transportation positioning,data exchange of XML Web services and role-based permission dynamic allocation,the multi-level multi-permission and multi-role logistics tracking management system of tropical agricultural products has been established.[Result] The system constructs information exchange platform for various links of logistics supply chain of tropical agricultural products,which realizes the entire quality monitoring and information tracing of agricultural products,thus enhancing the competitiveness of supply chain in company.[Conclusion] The system has good application and extension prospect.
基金The National Natural Science Foundation of China(No.50478113)the Leading Academic Discipline Project of Shanghai Municipal Education Commission(No.J50502)
文摘To study the draft sensation distribution of an air jet supply system in a large space building in summer,experiments are conducted in a large laboratory.The temperature,velocity and draft sensation distributions at a nozzle height of 4 m in the occupied zone are obtained.Then,the numerical simulation under the test condition is carried out by the computational fluid dynamics(CFD)method.The calculation results of the indoor vertical temperature and the draft sensation distribution are validated by the test data.Simulations with different nozzle heights are conducted.The satisfactory air supply condition is determined by analyzing the draft sensations and the temperatures in the occupied zone under three conditions.The simulation results show that the optimal draft sensation distribution and the uniform temperature and velocity fields can be obtained at a nozzle height of 5 m.
文摘In this research, LINGO is used successfully to solve the water supply system′s optimal operation model. Firstly, the language of LINGO and the using method were studied intensively, on the basis of which the model was transformed to LINGO form and solved successfully. Secondly, the research on the interface between LINGO and the popular office software was made. The optimization software was developed, which had Excel as the workspace and LINGO as the core of computation. Through practice, this software was found stable, easy to use and suitable for the application to the water supply corporations.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2021EEEVL0204 and 2018A02。
文摘As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.
基金supported in part by the Scientific Foundation for Outstanding Young Scientists of Sichuan under Grant No.2021JDJQ0032in part by the National Natural Science Foundation of China under Grant No.52107128in part by the Natural Science Foundation of Sichuan Province under Grant No.2022NSFSC0436.
文摘Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.
基金funded by the China National Key Research and Development Program(No.2022YFC3003505)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB23Y01)+1 种基金the National Natural Science Foundation of China(No.52278540)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB22B28).
文摘In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.
基金Project (No. 50078048) supported by the National Natural Science Foundation of China
文摘In view of the poor water supply system’s network properties, the system’s complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow and water source head. By using pump-station pressure head and initial tank water levels as decision variables, the model of optimal allocation of water supply between pump-sources was developed. Genetic algorithm was introduced to deal with the model of optimal allocation of water supply. Methods for handling each constraint condition were put forward, and overcome the shortcoming such as premature convergence of genetic algorithm; a solving method was brought forward in which genetic algorithm was combined with simulated annealing technology and self-adaptive crossover and mutation probabilities were adopted. An application example showed the feasibility of this algorithm.
基金Under the auspices of National Natural Science Foundation of China(No.41861034)。
文摘The relationship between the supply and demand for ecosystem services(ESs)is a key issue for the rational allocation of natural resources and optimisation of sustainable development capacity.This paper investigateed the dynamic evolution features of supply and demand of four ESs in Lanzhou of China,namely,water supply,food supply,carbon fixation and soil retention services.The crosssectional data of 2005 and 2017 were used for calculating ESs value and its supply and demand through ArcGIS software,InVEST model,elastic coefficient model and coupling coordination model.Results showed that:1)from 2005 to 2017,the supply of water supply services increased,the demand of soil retention services decreased,and the supply and demand of food supply and carbon fixation services increased.The high-value areas of service supply were mainly distributed in the rocky mountain areas in the southeast and northwest with high vegetation coverage,while the high-value areas of demand were mainly distributed in the urban areas and surrounding areas with high population density.2)There were five different types of coupling relations.Water supply service was dominated by a negative coupling type D,which means that the decrease in demand for ESs has had a positive response on the supply of ESs.Negative coupling type C was the main type of food supply and carbon fixation services,which means that the increase in demand for ESs has had a negative response on the supply of ESs.All three services were supplemented by a positive coupling type A,which means that the increase in demand for ESs has had a positive response on the supply of ESs.Soil retention service generally exhibits a positive coupling type B,which means that the decrease in demand for ESs has had a negative response on the supply of ESs.3)Over the past 12 yr,the coordination degree of supply and demand of water supply,food supply and soil retention services decreased,and the coordination degree of carbon fixation service increased.Various types of ES had a low degree of coupling and coordination,showing different characteristics of temporal and spatial evolution.The areas with imbalanced ESs supply and demand were mainly distributed in urban areas dominated by construction land.The research results are valuable to the optimisation of urban and rural ecological environments and the sustainable development of territory space under the framework of ecological civilisation,including similar ecologically vulnerable areas in other developing countries.
文摘Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system. A dynamic optimization model of the supply chain is developed. It has achieved optimal system profit under conditions guaranteeing a certain level of customer satisfaction. Applying this model to coal production of the Xuzhou coal mines allows recommendations for a more systematic use of washing and processing,transportation and sale resources for commercial coal production to be made. The results show that this model,which is scientific and effective,has an important value for making reasonable decisions related to complex coal enterprises.
基金The project supported by the Chinese Academy of Sciences (No. SYKXD04)
文摘The power supply system of ion source for the Neutral Beam Injector (NBI) in the HT-7 superconducting tokamak is based on a single injector with one ion source that can deliver 700 kW of neutral beam power. Experiments and a discharges test on the ion source were successfully performed. In this paper, the circuit structures and features of every power supply are described and the results of the discharges test are presented.
基金Project (No.033113111) supported by Tianjin Science Association Key Project,China
文摘Due to pollution in second water supply system (SWSS),nine renovation alternative plans were proposed and com-prehensive evaluations of different plan based on Analytical Hierarchy Process (AHP) were presented in this paper. Comparisons of advantages and disadvantages among the plans of SWSS renovations provided solid foundation for selecting the most appro-priate plan for engineering projects. In addition,a mathematical model of the optimal combination of renovation plans has been set up and software Lingo was used to solve the model. As a case study,the paper analyzed 15 buildings in Tianjin City. After simulation of the SWSS renovation system,an optimal scheme was obtained,the result of which indicates that 10 out of those 15 buildings need be renovated in priority. The renovation plans selected for each building are the ones ranked higher in the com-prehensive analysis. The analysis revealed that the optimal scheme,compared with two other randomly calculated ones,increased the percentage of service population by 19.6% and 13.6% respectively,which significantly improved social and economical benefits.
基金Project(50478113) supported by the National Natural Science Foundation of ChinaProject(J50502) supported by the Leading Academic Discipline Project of Shanghai Municipal Education Commission,China
文摘The thermal stratification level of low sidewall air supply system in large space was defined. Depending on the experiment of low sidewall air supply in summer 2008,the thermal stratification level was studied by simulation. Based on the simulation of experiment condition,the air velocity and vertical temperature distribution in a large space were simulated at different air-outlet velocities,and then the thermal stratification level line was obtained. The simulation results well match with the experimental ones and the average relative error is 3.4%. The thermal stratification level is heightened by increasing the air-outlet velocity with low sidewall air supply mode. It is concluded that when air-outlet velocity is 0.29 m/s,which is the experimental case,a uniform thermal environment in the higher occupied zone and a stable stratification level are formed. When the air-outlet velocity is low,such as 0.05 m/s,the thermal stratification level is too low and the air velocity is too small to meet the human thermal comfort in the occupied zone. So,it would be reasonable that the air-outlet velocity may be designed as 0.31 m/s if the height of the occupied zone is 2 m.
基金supported by the National Natural Science Foundation of China(Grants No.52179062 and 51879087).
文摘For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.
文摘A circular and sustainable economy for the private transport sector requires a holistic view of the emitted CO_(2) emissions.Looking at the energy supplied to the vehicle in terms of a circular economy leads to defossilisation.The remaining energy sources or forms are renewable electric energy,green hydrogen and renewable fuels.A holistic view of the CO_(2) emissions of these energy sources and forms and the resulting powertrain technologies must take into account all cradle-to-grave emissions for both the vehicle and the energy supply.In order to compare the different forms of energy,the three most relevant forms of powertrain technology are considered and a configuration is chosen that allows for an appropriate comparison.For this purpose,data from the FVV project“Powertrain 2040”are used[1]and combined with research data on the energy supply chain for passenger cars.The three comparable powertrain configurations are a battery electric vehicle,a fuel cell electric vehicle and an internal combustion engine hybrid vehicle fueled with electric fuel.First,the three selected powertrain configurations are presented in terms of their performance,weight,technology and other characteristics.A comparative analysis is carried out for different CO_(2) emissions of the electricity mix.The electricity mix is used for both the production of the vehicle and the energy.The results are presented in the form of cradle-to-wheel emissions,which consider the total CO_(2) emissions of the vehicle over its life cycle.Finally,the results are analyzed and discussed to determine which powertrain technology fits best into which energy sector CO_(2) emissions window.
基金This work was supported by the Humanities and Social Science Fund of Ministry of Education of China(No.20YJA630009)Shandong Natural Science Foundation of China(No.ZR2022MG002).
文摘This study delves into the formation dynamics of alliances within a closed-loop supply chain(CLSC)that encom-passes a manufacturer,a retailer,and an e-commerce platform.It leverages Stackelberg game for this exploration,contrasting the equilibrium outcomes of a non-alliance model with those of three differentiated alliance models.The non-alliance model acts as a crucial benchmark,enabling the evaluation of the motivations for various supply chain entities to engage in alliance formations.Our analysis is centered on identifying the most effective alliance strategies and establishing a coordination within these partnerships.We thoroughly investigate the consequences of diverse alliance behaviors,bidirectional free-riding and cost-sharing,and the resultant effects on the optimal decision-making among supply chain actors.The findings underscore several pivotal insights:(1)The behavior of alliances within the supply chain exerts variable impacts on the optimal pricing and demand of its members.In comparison to the non-alliance(D)model,the manufacturer-retailer(MR)and manufacturer-e-commerce platform(ME)alliances significantly lower both offline and online resale prices for new and remanufactured goods.This adjustment leads to an enhanced demand for products via the MR alliance’s offline outlets and the ME alliance’s online platforms,thereby augmenting the profits for those within the alliance.Conversely,retailer-e-commerce platform(ER)alliance tends to increase the optimal retail price and demand across both online and offline channels.Under specific conditions,alliance behavior can also increase the profits of non-alliance members,and the profits derived through alliance channels also exceed those from non-alliance channels.(2)The prevalence of bidirectional free-riding behavior largely remains constant across different alliance configurations.Across these models,bidirectional free-riding typically elevates the equilibrium prices in offline channel while negatively affecting the equilibrium prices in other channel.(3)The effect of cost-sharing shows relative uniformity across the various alliance models.Across all configurations,cost-sharing tends to reduce the manufacturer’s profits.Nonetheless,alliances initiated by the manufacturer can counteract these negative impacts,providing a strategic pathway to bolster CLSC profitability.