The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based ...The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter.展开更多
The internally balanced theory proposed by the Japanese researchers,solved the contradiction between adsorption ability and moving capability of the permanent magnetic adsorption mechanism.However,it still has some pr...The internally balanced theory proposed by the Japanese researchers,solved the contradiction between adsorption ability and moving capability of the permanent magnetic adsorption mechanism.However,it still has some problems when applied to wall climbing robots.This paper analyzes and improves this theory,and the improved internally balanced theory satisfies the requirements of the adsorption mechanism significantly.Finally,a practical prototype is proposed based on this method,and both the analysis using ANSYS and the experiment results justify the design validity.展开更多
Peer-to-peer(P2P)energy trading refers to a type of decentralized transaction,where the energy from distributed energy resources is directly traded between peers.A key challenge in peer-to-peer energy trading is desig...Peer-to-peer(P2P)energy trading refers to a type of decentralized transaction,where the energy from distributed energy resources is directly traded between peers.A key challenge in peer-to-peer energy trading is designing a safe,efficient,and transparent trading model and operating mechanism.In this study,we consider a P2P trading environment based on blockchain technology,where prosumers can submit bids or offers without knowing the reports of others.We propose an Arrow-d’Aspremont-Gerard-Varet(AGV)-based mechanism to encourage prosumers to submit their real reserve price and determine the P2P transaction price.We demonstrate that the AGV mechanism can achieve Bayesian incentive compatibility and budget balance.Kernel density estimation(KDE)is used to derive the prior distribution from the historical bid/offer information of the agents.Case studies are carried out to analyze and evaluate the proposed mechanism.Simulation results verify the effectiveness of the proposed mechanism in guiding agents to report the true reserve price while maximizing social welfare.Moreover,we discuss the advantages of budget balance for decentralized trading by comparing the Vickrey-Clarke-Groves(VCG)and AGV mechanisms.展开更多
This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a mul...This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a multi-strategy mechanism (BSFAOA). This algorithm introduces three strategies within the standard AOA framework: an adaptive balance factor SMOA based on sine functions, a search strategy combining Spiral Search and Brownian Motion, and a hybrid perturbation strategy based on Whale Fall Mechanism and Polynomial Differential Learning. The BSFAOA algorithm is analyzed in depth on the well-known 23 benchmark functions, CEC2019 test functions, and four real optimization problems. The experimental results demonstrate that the BSFAOA algorithm can better balance the exploration and exploitation capabilities, significantly enhancing the stability, convergence mode, and search efficiency of the AOA algorithm.展开更多
Construction of the ecological compensation mechanism is an important approach to put the“Beijing-Tianjin-Hebei Coordinated Development Plan”into practice and improve the ecological environment of the Beijing-Tianji...Construction of the ecological compensation mechanism is an important approach to put the“Beijing-Tianjin-Hebei Coordinated Development Plan”into practice and improve the ecological environment of the Beijing-Tianjin-Hebei region.This paper constructs an ecological compensation mechanism for the Beijing-Tianjin-Hebei region based on the footprint balance and footprint deficit after clarifying ecological governance objectives.First,this paper proposes to establish a uniform,hierarchical and classified supply mechanism of ecosystem services according to the classification of land resources,water resources and forest resources for the Beijing-Tianjin-Hebei region.Then,the“Authority with Corresponding Responsibility”for the supply of ecosystem services in the Beijing-Tianjin-Hebei region can be realized through a footprint balance and footprint deficit indicator circulation mechanism.Finally,the scientific and rational ecological compensation standard can be guaranteed through establishing the integrated governance mechanism for ecological compensation in the Beijing-Tianjin-Hebei region and improving the“ecological compensation standard”.The results of this paper can provide sound theoretical support for effectively promoting the improvement of ecosystem services and human well-being in the Beijing-Tianjin-Hebei region.展开更多
This paper clarifies the relationship between the flow paths of the corresponding ecological flows because of the ecological impact for land consolidation, using external energy methods to measure the external input o...This paper clarifies the relationship between the flow paths of the corresponding ecological flows because of the ecological impact for land consolidation, using external energy methods to measure the external input of the project area or the output of ecological products. The application for nonlinear estimation of partial differential equations to land consolidation, the project ecological flow and system efficiency were quantitatively calculated. It shows that the conflict between fairness and efficiency is caused under conditions and levels of value and ecological compensation mechanism is built as a criterion for this ecological economics. Based on the years of use of the land improvement project, the time evolution of regional net ecological value, natural resource dependence, renewable resource dependence, ecological output ratio, ecological carrying capacity and ecological sustainability after the implementation of the project was assessed.展开更多
Load-balance is an important issue in wireless sensor networks (WSNs), especially in WSNs with hierarchical structure. Energy consumed unevenly will bring the production of hot spots. Hot spot will cause WSNs to divid...Load-balance is an important issue in wireless sensor networks (WSNs), especially in WSNs with hierarchical structure. Energy consumed unevenly will bring the production of hot spots. Hot spot will cause WSNs to divide some unconnected sub-networks and shorten the lifetime of WSNs. To tackle this problem, a load-balance mechanism is proposed based on minority game (MG) with dormancy strategy. This mechanism can cause the rich behaviors of cooperation , prolong lifetime of WSNs, and keep energy consumed evenly. This dormancy mechanism can save energy of nodes by keeping in sleep temperately . Simulation results show that the proposed strategy can efficiently enhance the lifetime of cluster and the lifetime of whole WSNs.展开更多
The loads acting on the sealing elements of balanced mechanical seals are analyzed. When the balance factor approaches the back pressure factor, the spring pressure will become main part of the face pressure. The leak...The loads acting on the sealing elements of balanced mechanical seals are analyzed. When the balance factor approaches the back pressure factor, the spring pressure will become main part of the face pressure. The leakage model of balanced mechanical seals is established on the base of M-B model for rough surface. Several GY-70 type balanced mechanical seals are tested. The influences of the spring pressure both on the leakage rate and on the friction characteristic of balanced mechanical seals are investigated. The research results indicate that as spring pressure increases, both the clear-ance between two end faces and the leakage rate will decrease, and the friction will be more serious because lubrication medium between the rotating ring and the stationary ring reduces, though the increase of the spring pressure may not be enough to change the face friction state of mechanical seals. There exists an optimum spring pressure for mechanical seal operation. Under this spring pres-sure, not only leakage rate is small, but also the seal end surfaces have a fine friction characteristic. Under different operating conditions, identical type mechanical seals may possess different spring pressure. Appropriate selection of spring pressure is valuable to realize long-period and small leakage rate operating of balanced mechanical seals.展开更多
The uncertainty of the mechanism motion error is mostly caused by the manufacturing process,so the motion error cannot be effectively predicted at the design phase.The problems of manufacturing complexity and the rela...The uncertainty of the mechanism motion error is mostly caused by the manufacturing process,so the motion error cannot be effectively predicted at the design phase.The problems of manufacturing complexity and the relationship between design and manufacturing are analyzed,and the influence of dimensional tolerance and fit tolerance on the motion accuracy of the system is considered in the design process.Then based on the Monte Carlo simulation,an optimal design model of planar linkage mechanism is set up.A typical offset slider-crank mechanism is used as an illustrative example to carry out the optimal design.Compared with the result of typical robustness design,the similar variation characteristics of the mean value and the standard deviation can be found,so the proposed method is effective.The method is furthermore applied in the optimization of the schemes with different fit tolerances and the prediction of motion errors in the design phase is achieved.A set of quantitative evaluation system for mechanism optimal design is provided.Finally,a basic strategy is presented to balance the motion precision and manufacturing cost.展开更多
Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesi...Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesis of elastic link mechanisms of a single spring beam which can be manufactured by NC coiling machines. These mechanisms are expected as disposable micro forceps. Smooth Curvature Model(SCM) with 3rd order Legendre polynomial curvature functions is applied to calculate large deformation of a curved cantilever beam by taking account of the balance between external and internal elastic forces and moments. SCM is then extended to analyze large deformation of a closed-loop curved elastic beam which is composed of multiple free curved beams. A closed-loop elastic link is divided into two free curved cantilever beams each of which is assumed as serially connected free curved cantilever beams described with SCM. The sets of coefficients of Legendre polynomials of SCM in all free curved cantilever beams are determined by taking account of the force and moment balance at connecting point where external input force is applied. The sets of coefficients of Legendre polynomials of a nonleaded closed-loop elastic link are optimized to design a link mechanism which can generate specified output motion due to input force applied at the assumed dividing point. For example, two planar micro grippers with a single pulling input force are analyzed and designed. The elastic deformation analyzed with proposed method agrees very well with that calculated with FEM. The designed micro gripper can generate the desired pinching motion. The proposed method can contribute to design compact and simple elastic mechanisms without high calculation costs.展开更多
Prolonged sludge age sequencing batch biofilm reactor (SBBR) without sludge discharge appears high performance phosphorus removal in treating saline and high-phosphorus wastewater,which cannot be explained by traditio...Prolonged sludge age sequencing batch biofilm reactor (SBBR) without sludge discharge appears high performance phosphorus removal in treating saline and high-phosphorus wastewater,which cannot be explained by traditional biological dephosphorization theory. The new path and mechanism of phosphorus removal was discussed on the phosphorus balance of phosphorus removal system without sludge discharge. Phosphorus balance in sludge was studied on 26 running cycles of the phosphorus reduction system. The results show that there is only 0.12 mg/g poly-P in sludge at the end of each reaction period,not phosphorus uptake by polyphosphate-accumulating organisms (PAOs). It is found that 41.8 mg/L of external phosphorus gets lost per day averagely,and 155 mg of internal phosphorus in sludge gets lost. The matrix bound phosphine in sludge achieves 36.04 mg/kg measured by alkaline digestion,and there is 18.44 mg/kg in +1 valence state,a intermediate,in sludge. This implies that the phosphorus removal system of prolonged sludge age SBBR without sludge discharge is a phosphate reduction,and the path of dephosphorization is phosphate→hypophosphite→phosphine.展开更多
The parasitic motion has been widely recognized as the major drawback of the parallel mechanism.Therefore a class of 2R1T PMs(parallel mechanism)without parasitic motion has been synthesized.However,these PMs can only...The parasitic motion has been widely recognized as the major drawback of the parallel mechanism.Therefore a class of 2R1T PMs(parallel mechanism)without parasitic motion has been synthesized.However,these PMs can only rotate around two axes in sequential order.It decreases the performance of the balancing adjustment of the end-efector.In this paper,a family of 2R1T PMs without parasitic motion was reconstructed by using a novel method based on the remarkable properties of rotational bifurcation mechanisms,which can rotate in sequential order.Furthermore,some PMs rotating around two continuous axes in an arbitrary order are established by adding single joints.Taking the practicability of these structures into consideration,the workspace of 3-PRPS PM was analyzed as an example.Moreover,this study explores the practical application of the PMs without parasitic motion in developing balance mechanisms in rough-terrain fre-fghting robots.During the climbing process,the tank is adjusted to be parallel to the horizontal plane in real-time.It is proved that this kind of structure realizes continuous rotation around two rotation axes on the premise of no parasitic motion.展开更多
The contradiction between id and ego is the root cause of various problems in the growth process of students.On the basis of understanding the functions of different psychological defense mechanisms,teachers can assis...The contradiction between id and ego is the root cause of various problems in the growth process of students.On the basis of understanding the functions of different psychological defense mechanisms,teachers can assist students in dealing with all areas of inner conflict and thus achieve a balanced state.Psychological defense mechanism is one of the means for individuals to deal with setbacks and anxiety.It plays an important role in preserving an individual's mental health.This paper mainly analyzes the impact of different types of psychological defense mechanisms in the growth process of students and discusses its importance as well as its significance.Finally,by analyzing its influencing factors,this paper also proposes strategies for adjusting the psychological defense mechanism,so as to provide reference for teachers in the practical education process.展开更多
Virtual reality is a new technology that simulates a three-dimensional virtual world on a com- puter and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact...Virtual reality is a new technology that simulates a three-dimensional virtual world on a com- puter and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can acti- vate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.展开更多
The history of the formation of the alpine region is affected by the activities of the glaciers, which have a strong influence on underground works in this area. Mechanized tunneling must adapt to the presence of soun...The history of the formation of the alpine region is affected by the activities of the glaciers, which have a strong influence on underground works in this area. Mechanized tunneling must adapt to the presence of sound and altered rock, as well as to inhomogeneous soil layers that range from permeable gravel to soft clay sediments along the same tunnel. This article focuses on past experiences with tunnel-boring machines (TBMs) in Switzerland, and specifically on the aspects of soil conditioning during a passage through inhomogeneous soft soils. Most tunnels in the past were drilled using the slurry mode (SM), in which the application of different additives was mainly limited to difficult zones of high permeability and stoppages for tool change and modification. For drillings with the less common earth pressure balanced mode (EPBM), continuous foam conditioning and the additional use of polymer and bentonite have proven to be successful. The use of conditioning additives led to new challenges during separation of the slurries (for SM) and disposal of the excavated soil (for EPBM). If the disposal of chemically treated soft soil mate- rial from the earth pressure balanced (EPB) drive in a manner that is compliant with environmental legislation is considered early on in the design and evaluation of the excavation mode, the EPBM can be beneficial for tunnels bored in glacial deposits.展开更多
BACKGROUND Condylar osteophytes,a remodeling form of temporomandibular joint osteoarthritis(TMJ OA),mainly manifest as marginal angular outgrowths of the condyle.Previous researchers have advocated surgical removal of...BACKGROUND Condylar osteophytes,a remodeling form of temporomandibular joint osteoarthritis(TMJ OA),mainly manifest as marginal angular outgrowths of the condyle.Previous researchers have advocated surgical removal of condylar osteophytes.Reports on the effect of occlusal splint on TMJ OA patients’joints have mostly focused on treatment with this splint,which can reduce the absorption of the affected condyle and promote repair and regeneration.However,the effect of the splint on the dissolution of condylar osteophytes has not yet been reported.CASE SUMMARY A 68-year-old female patient suffered from occlusal discomfort with left facial pain for 2 years.Cone beam computed tomography showed a rare osteophyte on top of her left condyle.She was finally diagnosed with TMJ OA.The patient refused surgical treatment and received conservative treatment with a muscle balance occlusal splint.The pain experienced by the patient on the left side of her face was relieved,and her chewing ability recovered after treatment.The osteophyte dissolved,and the condylar cortex remained stable during long-term follow-up observations.CONCLUSION The muscle balance occlusal splint could be a noninvasive means of treating condylar osteophytes in TMJ OA patients.展开更多
The constitutive relation of powder material was derived based on the assumption that metal powder is a kind of elasto-plastic material, complying with an elliptical yield criterion. The constitutive integration algor...The constitutive relation of powder material was derived based on the assumption that metal powder is a kind of elasto-plastic material, complying with an elliptical yield criterion. The constitutive integration algorithm was discussed. A way to solve the elastic strain increment in each iteration step during elasto-plastic transition stage was formulated. Different integration method was used for elastic and plastic strain. The relationship between model parameters and relative density was determined through experiments. The model was implemented into user-subroutines of Marc. With the code, computer simulations for compaction process of a balancer were performed. The part is not axisymmetric and requires two lower punches and one upper punch to form. The relative density distributions of two design cases, in which different initial positions of the punches were set, were obtained and compared. The simulation results indicate the influence of punch position and movement on the density distribution of the green compacts.展开更多
BACKGROUND Nearly 10%of patients undergoing primary total knee arthroplasty(TKA)have valgus deformity(VD)of the knee.For severe VD of the knee,a more lateral structural release is needed to achieve balance between med...BACKGROUND Nearly 10%of patients undergoing primary total knee arthroplasty(TKA)have valgus deformity(VD)of the knee.For severe VD of the knee,a more lateral structural release is needed to achieve balance between medial and lateral space and neutral femorotibial mechanical axis(FTMA),which is challenging and technical.AIM To introduce a new surgical technique of resection,soft tissue release,and FTMA for Ranawat type-Ⅱ VD with a 5-year follow-up.METHODS A retrospective study was conducted on patients who underwent TKA from December 2011 to December 2014.Hip-knee-ankle(HKA),range of motion(ROM),Oxford knee score(OKS),and knee society score(KSS)were used to assess the joint activity of patients in the new theory TKA group(NT-TKA)and were compared with those of the conventional TKA group(C-TKA).RESULTS A total of 103 people(103 knees)were included in this study,including 42 patients with an average follow-up period of 83 mo in the C-TKA group and 61 patients with an average follow-up period of 76 mo in the NT-TKA group.Six patients had constrained prosthesis,one had common peroneal nerve injury,and two had joint instability in the C-TKA group,but none of these occurred in the NT-TKA group.There were significant statistical differences in constrained prosthesis usage and complications between the groups(P=0.002 and P=0.034,respectively).The KSS at 1 mo post-operation for the C-TKA and NT-TKA groups were 11.2±3.8 and 13.3±2.9,respectively,with a significant difference(P=0.007).However,the data of HKA,ROM,OKS KSS,and prosthesis survival rate were insignificant(P>0.05)in both the preoperative and follow-up periods.CONCLUSION Adopting 5°-7°valgus cut angle for VD and sacrificing 2°neutral FTMA for severe VD which cannot be completely corrected during TKA can reduce the need for soft tissue release,maintain early joint stability,reduce the use of constrained prostheses,and minimize postoperative complications.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.51974023 and52374321)the funding of State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing,China (No.41620007)。
文摘The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter.
文摘The internally balanced theory proposed by the Japanese researchers,solved the contradiction between adsorption ability and moving capability of the permanent magnetic adsorption mechanism.However,it still has some problems when applied to wall climbing robots.This paper analyzes and improves this theory,and the improved internally balanced theory satisfies the requirements of the adsorption mechanism significantly.Finally,a practical prototype is proposed based on this method,and both the analysis using ANSYS and the experiment results justify the design validity.
基金supported by National Natural Science Foundation of China(U2066211,52177124,52107134)the Institute of Electrical Engineering,CAS(E155610101)+1 种基金the DNL Cooperation Fund,CAS(DNL202023)the Youth Innovation Promotion Association of CAS(2019143).
文摘Peer-to-peer(P2P)energy trading refers to a type of decentralized transaction,where the energy from distributed energy resources is directly traded between peers.A key challenge in peer-to-peer energy trading is designing a safe,efficient,and transparent trading model and operating mechanism.In this study,we consider a P2P trading environment based on blockchain technology,where prosumers can submit bids or offers without knowing the reports of others.We propose an Arrow-d’Aspremont-Gerard-Varet(AGV)-based mechanism to encourage prosumers to submit their real reserve price and determine the P2P transaction price.We demonstrate that the AGV mechanism can achieve Bayesian incentive compatibility and budget balance.Kernel density estimation(KDE)is used to derive the prior distribution from the historical bid/offer information of the agents.Case studies are carried out to analyze and evaluate the proposed mechanism.Simulation results verify the effectiveness of the proposed mechanism in guiding agents to report the true reserve price while maximizing social welfare.Moreover,we discuss the advantages of budget balance for decentralized trading by comparing the Vickrey-Clarke-Groves(VCG)and AGV mechanisms.
文摘This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a multi-strategy mechanism (BSFAOA). This algorithm introduces three strategies within the standard AOA framework: an adaptive balance factor SMOA based on sine functions, a search strategy combining Spiral Search and Brownian Motion, and a hybrid perturbation strategy based on Whale Fall Mechanism and Polynomial Differential Learning. The BSFAOA algorithm is analyzed in depth on the well-known 23 benchmark functions, CEC2019 test functions, and four real optimization problems. The experimental results demonstrate that the BSFAOA algorithm can better balance the exploration and exploitation capabilities, significantly enhancing the stability, convergence mode, and search efficiency of the AOA algorithm.
基金This research is supporteded by the Major Project of Humanities and Social Science Research of the Hebei Education Department(Grant No.ZD201907)the Young Scientists Fund of the Hebei College Science and Technology Research Program(Grant No.QN2018252)the Young Scientists Fund of the National Natural Science Foundation of China(Grant Nos..51909052,41807169).
文摘Construction of the ecological compensation mechanism is an important approach to put the“Beijing-Tianjin-Hebei Coordinated Development Plan”into practice and improve the ecological environment of the Beijing-Tianjin-Hebei region.This paper constructs an ecological compensation mechanism for the Beijing-Tianjin-Hebei region based on the footprint balance and footprint deficit after clarifying ecological governance objectives.First,this paper proposes to establish a uniform,hierarchical and classified supply mechanism of ecosystem services according to the classification of land resources,water resources and forest resources for the Beijing-Tianjin-Hebei region.Then,the“Authority with Corresponding Responsibility”for the supply of ecosystem services in the Beijing-Tianjin-Hebei region can be realized through a footprint balance and footprint deficit indicator circulation mechanism.Finally,the scientific and rational ecological compensation standard can be guaranteed through establishing the integrated governance mechanism for ecological compensation in the Beijing-Tianjin-Hebei region and improving the“ecological compensation standard”.The results of this paper can provide sound theoretical support for effectively promoting the improvement of ecosystem services and human well-being in the Beijing-Tianjin-Hebei region.
文摘This paper clarifies the relationship between the flow paths of the corresponding ecological flows because of the ecological impact for land consolidation, using external energy methods to measure the external input of the project area or the output of ecological products. The application for nonlinear estimation of partial differential equations to land consolidation, the project ecological flow and system efficiency were quantitatively calculated. It shows that the conflict between fairness and efficiency is caused under conditions and levels of value and ecological compensation mechanism is built as a criterion for this ecological economics. Based on the years of use of the land improvement project, the time evolution of regional net ecological value, natural resource dependence, renewable resource dependence, ecological output ratio, ecological carrying capacity and ecological sustainability after the implementation of the project was assessed.
文摘Load-balance is an important issue in wireless sensor networks (WSNs), especially in WSNs with hierarchical structure. Energy consumed unevenly will bring the production of hot spots. Hot spot will cause WSNs to divide some unconnected sub-networks and shorten the lifetime of WSNs. To tackle this problem, a load-balance mechanism is proposed based on minority game (MG) with dormancy strategy. This mechanism can cause the rich behaviors of cooperation , prolong lifetime of WSNs, and keep energy consumed evenly. This dormancy mechanism can save energy of nodes by keeping in sleep temperately . Simulation results show that the proposed strategy can efficiently enhance the lifetime of cluster and the lifetime of whole WSNs.
基金This project is supported by Provincial Natural Science Foundation of Educa-tion Office of Jiangsu, China (No. 04KJD530090)Innovating Founda-tion for Doctoral Dissertation of Nanjing University of Technology, China (No. BSCX200510).
文摘The loads acting on the sealing elements of balanced mechanical seals are analyzed. When the balance factor approaches the back pressure factor, the spring pressure will become main part of the face pressure. The leakage model of balanced mechanical seals is established on the base of M-B model for rough surface. Several GY-70 type balanced mechanical seals are tested. The influences of the spring pressure both on the leakage rate and on the friction characteristic of balanced mechanical seals are investigated. The research results indicate that as spring pressure increases, both the clear-ance between two end faces and the leakage rate will decrease, and the friction will be more serious because lubrication medium between the rotating ring and the stationary ring reduces, though the increase of the spring pressure may not be enough to change the face friction state of mechanical seals. There exists an optimum spring pressure for mechanical seal operation. Under this spring pres-sure, not only leakage rate is small, but also the seal end surfaces have a fine friction characteristic. Under different operating conditions, identical type mechanical seals may possess different spring pressure. Appropriate selection of spring pressure is valuable to realize long-period and small leakage rate operating of balanced mechanical seals.
基金supported by the National Natural Science Foundation of China(No.51275365)the National High-tech R&D Program (863 Program ) (No. 2014AA041504)
文摘The uncertainty of the mechanism motion error is mostly caused by the manufacturing process,so the motion error cannot be effectively predicted at the design phase.The problems of manufacturing complexity and the relationship between design and manufacturing are analyzed,and the influence of dimensional tolerance and fit tolerance on the motion accuracy of the system is considered in the design process.Then based on the Monte Carlo simulation,an optimal design model of planar linkage mechanism is set up.A typical offset slider-crank mechanism is used as an illustrative example to carry out the optimal design.Compared with the result of typical robustness design,the similar variation characteristics of the mean value and the standard deviation can be found,so the proposed method is effective.The method is furthermore applied in the optimization of the schemes with different fit tolerances and the prediction of motion errors in the design phase is achieved.A set of quantitative evaluation system for mechanism optimal design is provided.Finally,a basic strategy is presented to balance the motion precision and manufacturing cost.
文摘Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesis of elastic link mechanisms of a single spring beam which can be manufactured by NC coiling machines. These mechanisms are expected as disposable micro forceps. Smooth Curvature Model(SCM) with 3rd order Legendre polynomial curvature functions is applied to calculate large deformation of a curved cantilever beam by taking account of the balance between external and internal elastic forces and moments. SCM is then extended to analyze large deformation of a closed-loop curved elastic beam which is composed of multiple free curved beams. A closed-loop elastic link is divided into two free curved cantilever beams each of which is assumed as serially connected free curved cantilever beams described with SCM. The sets of coefficients of Legendre polynomials of SCM in all free curved cantilever beams are determined by taking account of the force and moment balance at connecting point where external input force is applied. The sets of coefficients of Legendre polynomials of a nonleaded closed-loop elastic link are optimized to design a link mechanism which can generate specified output motion due to input force applied at the assumed dividing point. For example, two planar micro grippers with a single pulling input force are analyzed and designed. The elastic deformation analyzed with proposed method agrees very well with that calculated with FEM. The designed micro gripper can generate the desired pinching motion. The proposed method can contribute to design compact and simple elastic mechanisms without high calculation costs.
基金Project (2008ZX07315-004) supported by National Water Pollution Controlled and Treatment Great Special of China
文摘Prolonged sludge age sequencing batch biofilm reactor (SBBR) without sludge discharge appears high performance phosphorus removal in treating saline and high-phosphorus wastewater,which cannot be explained by traditional biological dephosphorization theory. The new path and mechanism of phosphorus removal was discussed on the phosphorus balance of phosphorus removal system without sludge discharge. Phosphorus balance in sludge was studied on 26 running cycles of the phosphorus reduction system. The results show that there is only 0.12 mg/g poly-P in sludge at the end of each reaction period,not phosphorus uptake by polyphosphate-accumulating organisms (PAOs). It is found that 41.8 mg/L of external phosphorus gets lost per day averagely,and 155 mg of internal phosphorus in sludge gets lost. The matrix bound phosphine in sludge achieves 36.04 mg/kg measured by alkaline digestion,and there is 18.44 mg/kg in +1 valence state,a intermediate,in sludge. This implies that the phosphorus removal system of prolonged sludge age SBBR without sludge discharge is a phosphate reduction,and the path of dephosphorization is phosphate→hypophosphite→phosphine.
基金Supported by National Natural Science Foundation of China(Grant No.31670719).
文摘The parasitic motion has been widely recognized as the major drawback of the parallel mechanism.Therefore a class of 2R1T PMs(parallel mechanism)without parasitic motion has been synthesized.However,these PMs can only rotate around two axes in sequential order.It decreases the performance of the balancing adjustment of the end-efector.In this paper,a family of 2R1T PMs without parasitic motion was reconstructed by using a novel method based on the remarkable properties of rotational bifurcation mechanisms,which can rotate in sequential order.Furthermore,some PMs rotating around two continuous axes in an arbitrary order are established by adding single joints.Taking the practicability of these structures into consideration,the workspace of 3-PRPS PM was analyzed as an example.Moreover,this study explores the practical application of the PMs without parasitic motion in developing balance mechanisms in rough-terrain fre-fghting robots.During the climbing process,the tank is adjusted to be parallel to the horizontal plane in real-time.It is proved that this kind of structure realizes continuous rotation around two rotation axes on the premise of no parasitic motion.
基金Anhui Provincial Natural Science Foundation(Grant Number:2108085QF269)Project of Quality Engineering of Anqing Normal University(Grant Number:2020aqnujyxm45)。
文摘The contradiction between id and ego is the root cause of various problems in the growth process of students.On the basis of understanding the functions of different psychological defense mechanisms,teachers can assist students in dealing with all areas of inner conflict and thus achieve a balanced state.Psychological defense mechanism is one of the means for individuals to deal with setbacks and anxiety.It plays an important role in preserving an individual's mental health.This paper mainly analyzes the impact of different types of psychological defense mechanisms in the growth process of students and discusses its importance as well as its significance.Finally,by analyzing its influencing factors,this paper also proposes strategies for adjusting the psychological defense mechanism,so as to provide reference for teachers in the practical education process.
基金supported by the National Natural Science Foundation of China,No.30973165 and 81372108Guangdong Province College Students Innovative Research Projects in 2013
文摘Virtual reality is a new technology that simulates a three-dimensional virtual world on a com- puter and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can acti- vate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.
文摘The history of the formation of the alpine region is affected by the activities of the glaciers, which have a strong influence on underground works in this area. Mechanized tunneling must adapt to the presence of sound and altered rock, as well as to inhomogeneous soil layers that range from permeable gravel to soft clay sediments along the same tunnel. This article focuses on past experiences with tunnel-boring machines (TBMs) in Switzerland, and specifically on the aspects of soil conditioning during a passage through inhomogeneous soft soils. Most tunnels in the past were drilled using the slurry mode (SM), in which the application of different additives was mainly limited to difficult zones of high permeability and stoppages for tool change and modification. For drillings with the less common earth pressure balanced mode (EPBM), continuous foam conditioning and the additional use of polymer and bentonite have proven to be successful. The use of conditioning additives led to new challenges during separation of the slurries (for SM) and disposal of the excavated soil (for EPBM). If the disposal of chemically treated soft soil mate- rial from the earth pressure balanced (EPB) drive in a manner that is compliant with environmental legislation is considered early on in the design and evaluation of the excavation mode, the EPBM can be beneficial for tunnels bored in glacial deposits.
文摘BACKGROUND Condylar osteophytes,a remodeling form of temporomandibular joint osteoarthritis(TMJ OA),mainly manifest as marginal angular outgrowths of the condyle.Previous researchers have advocated surgical removal of condylar osteophytes.Reports on the effect of occlusal splint on TMJ OA patients’joints have mostly focused on treatment with this splint,which can reduce the absorption of the affected condyle and promote repair and regeneration.However,the effect of the splint on the dissolution of condylar osteophytes has not yet been reported.CASE SUMMARY A 68-year-old female patient suffered from occlusal discomfort with left facial pain for 2 years.Cone beam computed tomography showed a rare osteophyte on top of her left condyle.She was finally diagnosed with TMJ OA.The patient refused surgical treatment and received conservative treatment with a muscle balance occlusal splint.The pain experienced by the patient on the left side of her face was relieved,and her chewing ability recovered after treatment.The osteophyte dissolved,and the condylar cortex remained stable during long-term follow-up observations.CONCLUSION The muscle balance occlusal splint could be a noninvasive means of treating condylar osteophytes in TMJ OA patients.
基金Porject(50325516) supported by the National Natural Science Foundation of China Project(CG2003-GA005) supported by China Education and Research Grid (China Grid) Project(003019) supported by the Natural Science Foundation of Guangdong Province, China
文摘The constitutive relation of powder material was derived based on the assumption that metal powder is a kind of elasto-plastic material, complying with an elliptical yield criterion. The constitutive integration algorithm was discussed. A way to solve the elastic strain increment in each iteration step during elasto-plastic transition stage was formulated. Different integration method was used for elastic and plastic strain. The relationship between model parameters and relative density was determined through experiments. The model was implemented into user-subroutines of Marc. With the code, computer simulations for compaction process of a balancer were performed. The part is not axisymmetric and requires two lower punches and one upper punch to form. The relative density distributions of two design cases, in which different initial positions of the punches were set, were obtained and compared. The simulation results indicate the influence of punch position and movement on the density distribution of the green compacts.
基金the Project of Excellent Young Talents of Traditional Chinese Medicine of Zhejiang Province,No.2019ZQ016the Zhejiang Medical and Health Science and Technology Young Talents Program,No.2019RC059.
文摘BACKGROUND Nearly 10%of patients undergoing primary total knee arthroplasty(TKA)have valgus deformity(VD)of the knee.For severe VD of the knee,a more lateral structural release is needed to achieve balance between medial and lateral space and neutral femorotibial mechanical axis(FTMA),which is challenging and technical.AIM To introduce a new surgical technique of resection,soft tissue release,and FTMA for Ranawat type-Ⅱ VD with a 5-year follow-up.METHODS A retrospective study was conducted on patients who underwent TKA from December 2011 to December 2014.Hip-knee-ankle(HKA),range of motion(ROM),Oxford knee score(OKS),and knee society score(KSS)were used to assess the joint activity of patients in the new theory TKA group(NT-TKA)and were compared with those of the conventional TKA group(C-TKA).RESULTS A total of 103 people(103 knees)were included in this study,including 42 patients with an average follow-up period of 83 mo in the C-TKA group and 61 patients with an average follow-up period of 76 mo in the NT-TKA group.Six patients had constrained prosthesis,one had common peroneal nerve injury,and two had joint instability in the C-TKA group,but none of these occurred in the NT-TKA group.There were significant statistical differences in constrained prosthesis usage and complications between the groups(P=0.002 and P=0.034,respectively).The KSS at 1 mo post-operation for the C-TKA and NT-TKA groups were 11.2±3.8 and 13.3±2.9,respectively,with a significant difference(P=0.007).However,the data of HKA,ROM,OKS KSS,and prosthesis survival rate were insignificant(P>0.05)in both the preoperative and follow-up periods.CONCLUSION Adopting 5°-7°valgus cut angle for VD and sacrificing 2°neutral FTMA for severe VD which cannot be completely corrected during TKA can reduce the need for soft tissue release,maintain early joint stability,reduce the use of constrained prostheses,and minimize postoperative complications.