As a classical model of statistical physics, the percolation theory provides a powerful approach to analyze the network structure and dynamics. Recently, to model the relations among interacting agents beyond the conn...As a classical model of statistical physics, the percolation theory provides a powerful approach to analyze the network structure and dynamics. Recently, to model the relations among interacting agents beyond the connection of the networked system, the concept of dependence link is proposed to represent the dependence relationship of agents. These studies suggest that the percolation properties of these networks differ greatly from those of the ordinary networks. In particular, unlike the well known continuous transition on the ordinary networks, the percolation transitions on these networks are discontinuous. Moreover, these networks are more fragile for a broader degree distribution, which is opposite to the famous results for the ordinary networks. In this article, we give a summary of the theoretical approaches to study the percolation process on networks with inter- and inner-dependence links, and review the recent advances in this field, focusing on the topology and robustness of such networks.展开更多
Osteocytes, the most abundant bone cells, form an interconnected network in the lacunar-canalicular pore system (LCS) buried within the mineralized matrix, which allows osteocytes to obtain nutrients from the blood ...Osteocytes, the most abundant bone cells, form an interconnected network in the lacunar-canalicular pore system (LCS) buried within the mineralized matrix, which allows osteocytes to obtain nutrients from the blood supply, sense external mechanical signals, and communicate among themselves and with other cells on bone surfaces. In this study, we examined key features of the LCS network including the topological parameter and the detailed structure of individual connections and their variations in cortical and cancellous compa~ tments, at different ages, and in two disease conditions with altered mechanosensing (perlecan deficiency and diabetes). LCS network showed both topological stability, in terms of conservation of connectivity among osteocyte lacunae (similar to the "nodes" in a computer network), and considerable variability the pericellular annular fluid gap surrounding lacunae and canaliculi (similar to the "bandwidth" of individual links in a computer network). Age, in the range of our study (15-32 weeks), affected only the pericellular fluid annulus in cortical bone but not in cancellous bone. Diabetes impacted the spacing of the lacunae, while the perlecan deficiency had a profound influence on the pericellular fluid annulus. The LCS network features play important roles in osteocyte signaling and regulation of bone growth and adaptation.展开更多
We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phas...We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phase transition behaviors and parameter thresholds of this model under random attacks are analyzed theoretically on both random regular(RR)networks and Erd¨os-Renyi(ER)networks,and computer simulations are performed to verify the results.In this EINDDL model,a fractionβof connectivity links within network B depends on network A and a fraction(1-β)of connectivity links within network A depends on network B.It is found that randomly removing a fraction(1-p)of connectivity links in network A at the initial state,network A exhibits different types of phase transitions(first order,second order and hybrid).Network B is rarely affected by cascading failure whenβis small,and network B will gradually converge from the first-order to the second-order phase transition asβincreases.We present the critical values ofβfor the phase change process of networks A and B,and give the critical values of p andβfor network B at the critical point of collapse.Furthermore,a cascading prevention strategy is proposed.The findings are of great significance for understanding the robustness of EINDDLs.展开更多
Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics ...Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics of edge networks,such as limited resources,complex network faults,and the need for high real-time performance,enhancing and optimizing existing network fault diagnosis methods is necessary.Therefore,this paper proposes the lightweight edge-side fault diagnosis approach based on a spiking neural network(LSNN).Firstly,we use the Izhikevich neurons model to replace the Leaky Integrate and Fire(LIF)neurons model in the LSNN model.Izhikevich neurons inherit the simplicity of LIF neurons but also possess richer behavioral characteristics and flexibility to handle diverse data inputs.Inspired by Fast Spiking Interneurons(FSIs)with a high-frequency firing pattern,we use the parameters of FSIs.Secondly,inspired by the connection mode based on spiking dynamics in the basal ganglia(BG)area of the brain,we propose the pruning approach based on the FSIs of the BG in LSNN to improve computational efficiency and reduce the demand for computing resources and energy consumption.Furthermore,we propose a multiple iterative Dynamic Spike Timing Dependent Plasticity(DSTDP)algorithm to enhance the accuracy of the LSNN model.Experiments on two server fault datasets demonstrate significant precision,recall,and F1 improvements across three diagnosis dimensions.Simultaneously,lightweight indicators such as Params and FLOPs significantly reduced,showcasing the LSNN’s advanced performance and model efficiency.To conclude,experiment results on a pair of datasets indicate that the LSNN model surpasses traditional models and achieves cutting-edge outcomes in network fault diagnosis tasks.展开更多
Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,...Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous.展开更多
The approach of traffic abnormality detection of network resource allocation attack did not have reliable signatures to depict abnormality and identify them. However, it is crucial for us to detect attacks accurately....The approach of traffic abnormality detection of network resource allocation attack did not have reliable signatures to depict abnormality and identify them. However, it is crucial for us to detect attacks accurately. The technique that we adopted is inspired by long range dependence ideas. We use the number of packet arrivals of a flow in fixed-length time intervals as the signal and attempt to extend traffic invariant “self-similarity”. We validate the effectiveness of the approach with simulation and trace analysis.展开更多
The mutual-interference phenomenon among multiple applications delivered as services through Cloud Services Delivery Network(CSDN)influences their QoS seriously.In order to deploy multiple applications dependably and ...The mutual-interference phenomenon among multiple applications delivered as services through Cloud Services Delivery Network(CSDN)influences their QoS seriously.In order to deploy multiple applications dependably and efficiently,we propose the Multiple Applications Co-Exist(MACE)method.MACE classifies multiple applications into different types and deploys them using isolation to some extent.Meanwhile,resource static allocation,dynamic supplement and resource reserved mechanism to minimize mutual-interference and maximize resource utilization are designed.After MACE is applied to a real large-scale CSDN and evaluated through 6-month measurement,we find that the CSDN load is more balanced,the bandwidth utilization increases by about 20%,the multiple applications'potential statistical multiplexing ratio decreases from 12% to 5%,and the number of complaint events affecting the dependability of CSDN services caused by multiple applications'mutual-interference has dropped to 0.Obviously,MACE offers a tradeoff and improvement for the dependability and efficiency goals of CSDN.展开更多
Through analysis the actual coal supply and demand in the US and China, the properties of the coal supply-demand market in both countries are investigated based on the energy supply-demand network. The validity of our...Through analysis the actual coal supply and demand in the US and China, the properties of the coal supply-demand market in both countries are investigated based on the energy supply-demand network. The validity of our model is verified by comparing numerical results with empirical results. The comparison of empirical results and the comparison of coal network model parameters between in the US and in China reveal the essence of the internal differences and similarities of coal supply and demand in these two countries. The third stage of China's coal network was close to that of the US in 1995, indicating that the evolutional situation of China's coal market begins to transit to an oligopolistic type. Finally, suggestions for China's coal supply-demand strategy are put forward.展开更多
In this paper a new modeling framework for the dependability analysis of complex systems is presented and related to dynamic fault trees (DFTs). The methodology is based on a modular approach: two separate models are ...In this paper a new modeling framework for the dependability analysis of complex systems is presented and related to dynamic fault trees (DFTs). The methodology is based on a modular approach: two separate models are used to handle, the fault logic and the stochastic dependencies of the system. Thus, the fault schema, free of any dependency logic, can be easily evaluated, while the dependency schema allows the modeler to design new kind of non-trivial dependencies not easily caught by the traditional holistic methodologies. Moreover, the use of a dependency schema allows building a pure behavioral model that can be used for various kinds of dependability studies. In the paper is shown how to build and integrate the two modular models and convert them in a Stochastic Activity Network. Furthermore, based on the construction of the schema that embeds the stochastic dependencies, the procedure to convert DFTs into static fault trees is shown, allowing the resolution of DFTs in a very efficient way.展开更多
To compensate for the limitations of previous studies,a complex network-based method is developed for determining importance measures,which combines the functional roles of the components of a mechatronic system and t...To compensate for the limitations of previous studies,a complex network-based method is developed for determining importance measures,which combines the functional roles of the components of a mechatronic system and their topological positions.First,the dependencies among the components are well-represented and well-calculated.Second,a mechatronic system is modeled as a weighted and directional functional dependency network(FDN),in which the node weights are determined by the functional roles of components in the system and their topological positions in the complex network whereas the edge weights are represented by dependency strengths.Third,given that the PageRank algorithm cannot calculate the dependency strengths among components,an improved PageRank importance measure(IPIM)algorithm is proposed,which combines the node weights and edge weights of complex networks.IPIM also considers the importance of neighboring components.Finally,a case study is conducted to investigate the accuracy of the proposed method.Results show that the method can effectively determine the importance measures of components.展开更多
Modernization of armies is a constant process and is driven by intuitive fact that those who do not modernize will become extinct. In last five decades, the development of modern armies has taken place around Colonel ...Modernization of armies is a constant process and is driven by intuitive fact that those who do not modernize will become extinct. In last five decades, the development of modern armies has taken place around Colonel John Boyd’s theory of OODA loop that deals with information superiority. Building a robust, mobile and capable network that could provide for novel appliances and information superiority is the main challenge which modernizers are facing. Network, suitable for future combat operations, and able to transport a vast amount of information on a battlefield, is expensive to build. Every mistake in design and the need to correct those mistakes could halt development in an army for years. Therefore, system dependability analysis during system design phase is needed. In this report, the concept of a future Battle Network System is described. The Report evaluates operational environment of BNS and possible failure reasons of the service, and illustrates the change in BNS Quality of Service due to probable transport layer errors. This paper describes the method of testing the concept of proposed network systems on the drawing board, and emphasizes design points for a new system. Nevertheless, the proposed method is by no means conclusive. Rather, it describes an engineering approach to define the main problems while creating MANET-based networking systems.展开更多
The cascading failure often occurs in real networks. It is significant to analyze the cascading failure in the complex network research. The dependency relation can change over time. Therefore, in this study, we inves...The cascading failure often occurs in real networks. It is significant to analyze the cascading failure in the complex network research. The dependency relation can change over time. Therefore, in this study, we investigate the cascading fail- ure in multilayer networks with dynamic dependency groups. We construct a model considering the recovery mechanism. In our model, two effects between layers are defined. Under Effect 1, the dependent nodes in other layers will be disabled as long as one node does not belong to the largest connected component in one layer. Under Effect 2, the dependent nodes in other layers will recover when one node belongs to the largest connected component. The theoretical solution of the largest component is deduced and the simulation results verify our theoretical solution. In the simulation, we analyze the influence factors of the network robustness, including the fraction of dependent nodes and the group size, in our model. It shows that increasing the fraction of dependent nodes and the group size will enhance the network robustness under Effect 1. On the contrary, these will reduce the network robustness under Effect 2. Meanwhile, we find that the tightness of the network connection will affect the robustness of networks. Furthermore, setting the average degree of network as 8 is enough to keep the network robust.展开更多
A guidance policy for controller performance enhancement utilizing mobile sensor-actuator networks (MSANs) is proposed for a class of distributed parameter systems (DPSs), which are governed by diffusion partial d...A guidance policy for controller performance enhancement utilizing mobile sensor-actuator networks (MSANs) is proposed for a class of distributed parameter systems (DPSs), which are governed by diffusion partial differential equations (PDEs) with time-dependent spatial domains. Several sufficient conditions for controller performance enhancement are presented. First, the infinite dimensional operator theory is used to derive an abstract evolution equation of the systems under some rational assumptions on the operators, and a static output feedback controller is designed to control the spatial process. Then, based on Lyapunov stability arguments, guidance policies for collocated and non-collocated MSANs are provided to enhance the performance of the proposed controller, which show that the time-dependent characteristic of the spatial domains can significantly affect the design of the mobile scheme. Finally, a simulation example illustrates the effectiveness of the proposed policy.展开更多
The paper aims to study the invulnerability of directed interdependent networks with multiple dependency relations: dependent and supportive. We establish three models and simulate in three network systems to deal wit...The paper aims to study the invulnerability of directed interdependent networks with multiple dependency relations: dependent and supportive. We establish three models and simulate in three network systems to deal with this question. To improve network invulnerability, we’d better avoid dependent relations transmission and add supportive relations symmetrically.展开更多
This paper is concerned with controller design of net- worked control systems (NCSs) with both network-induced delay and arbitrary packet dropout. By using a packet-loss-dependent Lyapunov function, sufficient condi...This paper is concerned with controller design of net- worked control systems (NCSs) with both network-induced delay and arbitrary packet dropout. By using a packet-loss-dependent Lyapunov function, sufficient conditions for state/output feedback stabilization and corresponding control laws are derived via a switched system approach. Different from the existing results, the proposed stabilizing controllers design is dependent on the packet loss occurring in the last two transmission intervals due to the network-induced delay. The cone complementary lineara- tion (CCL) methodology is used to solve the non-convex feasibility problem by formulating it into an optimization problem subject to linear matrix inequality (LMI) constraints. Numerical examples and simulations are worked out to demonstrate the effectiveness and validity of the proposed techniques.展开更多
In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigate...In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigated. The sam- pling period is assumed to be time-varying and bounded. The information of probability distribution of the time-varying delay is considered and transformed into parameter matrices of the transferred complex dynamical network model. Based on the condition, the design method of the desired sampled data controller is proposed. By constructing a new Lyapunov functional with triple integral terms, delay-distribution-dependent exponential synchronization criteria are derived in the form of linear matrix inequalities. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.展开更多
This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functi...This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functionals are constructed and the linear matrix inequality (LMI) approach and free weighting matrix method are employed to devise some delay-dependent stability criteria which guarantee the existence, uniqueness and global exponential stability of the equilibrium point for all admissible parametric uncertainties. By using Leibniz-Newton formula, free weighting matrices are employed to express this relationship, which implies that the new criteria are less conservative than existing ones. Some examples suggest that the proposed criteria are effective and are an improvement over previous ones.展开更多
This paper deals with the problem of delay-dependent stability and stabilization for networked control systems(NCSs)with multiple time-delays. In view of multi-input and multi-output(MIMO) NCSs with many independe...This paper deals with the problem of delay-dependent stability and stabilization for networked control systems(NCSs)with multiple time-delays. In view of multi-input and multi-output(MIMO) NCSs with many independent sensors and actuators, a continuous time model with distributed time-delays is proposed. Utilizing the Lyapunov stability theory combined with linear matrix inequalities(LMIs) techniques, some new delay-dependent stability criteria for NCSs in terms of generalized Lyapunov matrix equation and LMIs are derived. Stabilizing controller via state feedback is formulated by solving a set of LMIs. Compared with the reported methods, the proposed methods give a less conservative delay bound and more general results. Numerical example and simulation show that the methods are less conservative and more effective.展开更多
In this paper, delay-dependent robust stability for a class of uncertain networked control systems (NCSs) with multiple state time-delays is investigated. Modeling of multi-input and multi-output (MIMO) NCSs with ...In this paper, delay-dependent robust stability for a class of uncertain networked control systems (NCSs) with multiple state time-delays is investigated. Modeling of multi-input and multi-output (MIMO) NCSs with networkinduced delays and uncertainties through new methods are proposed. Some new stability criteria in terms of LMIs are derived by using Lyapunov stability theory combined with linear matrix inequalities (LMIs) techniques. We analyze the delay-dependent asymptotic stability and obtain maximum allowable delay bound (MADB) for the NCSs with the proposed methods. Compared with the reported results, the proposed results obtain a much less conservative MADB which are more general. Numerical example and simulation is used to illustrate the effectiveness of the proposed methods.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11275186 and 91024026)
文摘As a classical model of statistical physics, the percolation theory provides a powerful approach to analyze the network structure and dynamics. Recently, to model the relations among interacting agents beyond the connection of the networked system, the concept of dependence link is proposed to represent the dependence relationship of agents. These studies suggest that the percolation properties of these networks differ greatly from those of the ordinary networks. In particular, unlike the well known continuous transition on the ordinary networks, the percolation transitions on these networks are discontinuous. Moreover, these networks are more fragile for a broader degree distribution, which is opposite to the famous results for the ordinary networks. In this article, we give a summary of the theoretical approaches to study the percolation process on networks with inter- and inner-dependence links, and review the recent advances in this field, focusing on the topology and robustness of such networks.
基金supported partially by funds from the NIH (RO1AR054385, P30GM103333)
文摘Osteocytes, the most abundant bone cells, form an interconnected network in the lacunar-canalicular pore system (LCS) buried within the mineralized matrix, which allows osteocytes to obtain nutrients from the blood supply, sense external mechanical signals, and communicate among themselves and with other cells on bone surfaces. In this study, we examined key features of the LCS network including the topological parameter and the detailed structure of individual connections and their variations in cortical and cancellous compa~ tments, at different ages, and in two disease conditions with altered mechanosensing (perlecan deficiency and diabetes). LCS network showed both topological stability, in terms of conservation of connectivity among osteocyte lacunae (similar to the "nodes" in a computer network), and considerable variability the pericellular annular fluid gap surrounding lacunae and canaliculi (similar to the "bandwidth" of individual links in a computer network). Age, in the range of our study (15-32 weeks), affected only the pericellular fluid annulus in cortical bone but not in cancellous bone. Diabetes impacted the spacing of the lacunae, while the perlecan deficiency had a profound influence on the pericellular fluid annulus. The LCS network features play important roles in osteocyte signaling and regulation of bone growth and adaptation.
基金the National Natural Science Foundation of China(Grant Nos.61973118,51741902,11761033,12075088,and 11835003)Project in JiangXi Province Department of Science and Technology(Grant Nos.20212BBE51010 and 20182BCB22009)the Natural Science Foundation of Zhejiang Province(Grant No.Y22F035316)。
文摘We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phase transition behaviors and parameter thresholds of this model under random attacks are analyzed theoretically on both random regular(RR)networks and Erd¨os-Renyi(ER)networks,and computer simulations are performed to verify the results.In this EINDDL model,a fractionβof connectivity links within network B depends on network A and a fraction(1-β)of connectivity links within network A depends on network B.It is found that randomly removing a fraction(1-p)of connectivity links in network A at the initial state,network A exhibits different types of phase transitions(first order,second order and hybrid).Network B is rarely affected by cascading failure whenβis small,and network B will gradually converge from the first-order to the second-order phase transition asβincreases.We present the critical values ofβfor the phase change process of networks A and B,and give the critical values of p andβfor network B at the critical point of collapse.Furthermore,a cascading prevention strategy is proposed.The findings are of great significance for understanding the robustness of EINDDLs.
基金supported by National Key R&D Program of China(2019YFB2103202).
文摘Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics of edge networks,such as limited resources,complex network faults,and the need for high real-time performance,enhancing and optimizing existing network fault diagnosis methods is necessary.Therefore,this paper proposes the lightweight edge-side fault diagnosis approach based on a spiking neural network(LSNN).Firstly,we use the Izhikevich neurons model to replace the Leaky Integrate and Fire(LIF)neurons model in the LSNN model.Izhikevich neurons inherit the simplicity of LIF neurons but also possess richer behavioral characteristics and flexibility to handle diverse data inputs.Inspired by Fast Spiking Interneurons(FSIs)with a high-frequency firing pattern,we use the parameters of FSIs.Secondly,inspired by the connection mode based on spiking dynamics in the basal ganglia(BG)area of the brain,we propose the pruning approach based on the FSIs of the BG in LSNN to improve computational efficiency and reduce the demand for computing resources and energy consumption.Furthermore,we propose a multiple iterative Dynamic Spike Timing Dependent Plasticity(DSTDP)algorithm to enhance the accuracy of the LSNN model.Experiments on two server fault datasets demonstrate significant precision,recall,and F1 improvements across three diagnosis dimensions.Simultaneously,lightweight indicators such as Params and FLOPs significantly reduced,showcasing the LSNN’s advanced performance and model efficiency.To conclude,experiment results on a pair of datasets indicate that the LSNN model surpasses traditional models and achieves cutting-edge outcomes in network fault diagnosis tasks.
文摘Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous.
文摘The approach of traffic abnormality detection of network resource allocation attack did not have reliable signatures to depict abnormality and identify them. However, it is crucial for us to detect attacks accurately. The technique that we adopted is inspired by long range dependence ideas. We use the number of packet arrivals of a flow in fixed-length time intervals as the signal and attempt to extend traffic invariant “self-similarity”. We validate the effectiveness of the approach with simulation and trace analysis.
基金National Basic Research Program of China under Grant No. 2011CB302600National Natural Science Foundation of China under Grant No. 90818028,No. 61003226National Science Fund for Distinguished Young Scholars under Grant No. 60625203
文摘The mutual-interference phenomenon among multiple applications delivered as services through Cloud Services Delivery Network(CSDN)influences their QoS seriously.In order to deploy multiple applications dependably and efficiently,we propose the Multiple Applications Co-Exist(MACE)method.MACE classifies multiple applications into different types and deploys them using isolation to some extent.Meanwhile,resource static allocation,dynamic supplement and resource reserved mechanism to minimize mutual-interference and maximize resource utilization are designed.After MACE is applied to a real large-scale CSDN and evaluated through 6-month measurement,we find that the CSDN load is more balanced,the bandwidth utilization increases by about 20%,the multiple applications'potential statistical multiplexing ratio decreases from 12% to 5%,and the number of complaint events affecting the dependability of CSDN services caused by multiple applications'mutual-interference has dropped to 0.Obviously,MACE offers a tradeoff and improvement for the dependability and efficiency goals of CSDN.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.71073071 and 71273119)the Major Program of Social Science Foundation of Jiangsu Education Office,China (Grant No.2010-2-10)
文摘Through analysis the actual coal supply and demand in the US and China, the properties of the coal supply-demand market in both countries are investigated based on the energy supply-demand network. The validity of our model is verified by comparing numerical results with empirical results. The comparison of empirical results and the comparison of coal network model parameters between in the US and in China reveal the essence of the internal differences and similarities of coal supply and demand in these two countries. The third stage of China's coal network was close to that of the US in 1995, indicating that the evolutional situation of China's coal market begins to transit to an oligopolistic type. Finally, suggestions for China's coal supply-demand strategy are put forward.
文摘In this paper a new modeling framework for the dependability analysis of complex systems is presented and related to dynamic fault trees (DFTs). The methodology is based on a modular approach: two separate models are used to handle, the fault logic and the stochastic dependencies of the system. Thus, the fault schema, free of any dependency logic, can be easily evaluated, while the dependency schema allows the modeler to design new kind of non-trivial dependencies not easily caught by the traditional holistic methodologies. Moreover, the use of a dependency schema allows building a pure behavioral model that can be used for various kinds of dependability studies. In the paper is shown how to build and integrate the two modular models and convert them in a Stochastic Activity Network. Furthermore, based on the construction of the schema that embeds the stochastic dependencies, the procedure to convert DFTs into static fault trees is shown, allowing the resolution of DFTs in a very efficient way.
基金The National Natural Science Foundation of China(No.51875429)General Program of Shenzhen Natural Science Foundation(No.JCYJ20190809142805521)Wenzhou Major Program of Scientific and Technological Innovation(No.ZG2021021).
文摘To compensate for the limitations of previous studies,a complex network-based method is developed for determining importance measures,which combines the functional roles of the components of a mechatronic system and their topological positions.First,the dependencies among the components are well-represented and well-calculated.Second,a mechatronic system is modeled as a weighted and directional functional dependency network(FDN),in which the node weights are determined by the functional roles of components in the system and their topological positions in the complex network whereas the edge weights are represented by dependency strengths.Third,given that the PageRank algorithm cannot calculate the dependency strengths among components,an improved PageRank importance measure(IPIM)algorithm is proposed,which combines the node weights and edge weights of complex networks.IPIM also considers the importance of neighboring components.Finally,a case study is conducted to investigate the accuracy of the proposed method.Results show that the method can effectively determine the importance measures of components.
文摘Modernization of armies is a constant process and is driven by intuitive fact that those who do not modernize will become extinct. In last five decades, the development of modern armies has taken place around Colonel John Boyd’s theory of OODA loop that deals with information superiority. Building a robust, mobile and capable network that could provide for novel appliances and information superiority is the main challenge which modernizers are facing. Network, suitable for future combat operations, and able to transport a vast amount of information on a battlefield, is expensive to build. Every mistake in design and the need to correct those mistakes could halt development in an army for years. Therefore, system dependability analysis during system design phase is needed. In this report, the concept of a future Battle Network System is described. The Report evaluates operational environment of BNS and possible failure reasons of the service, and illustrates the change in BNS Quality of Service due to probable transport layer errors. This paper describes the method of testing the concept of proposed network systems on the drawing board, and emphasizes design points for a new system. Nevertheless, the proposed method is by no means conclusive. Rather, it describes an engineering approach to define the main problems while creating MANET-based networking systems.
基金Project supported by the National Natural Science Foundation of China(Grant No.61601053)
文摘The cascading failure often occurs in real networks. It is significant to analyze the cascading failure in the complex network research. The dependency relation can change over time. Therefore, in this study, we investigate the cascading fail- ure in multilayer networks with dynamic dependency groups. We construct a model considering the recovery mechanism. In our model, two effects between layers are defined. Under Effect 1, the dependent nodes in other layers will be disabled as long as one node does not belong to the largest connected component in one layer. Under Effect 2, the dependent nodes in other layers will recover when one node belongs to the largest connected component. The theoretical solution of the largest component is deduced and the simulation results verify our theoretical solution. In the simulation, we analyze the influence factors of the network robustness, including the fraction of dependent nodes and the group size, in our model. It shows that increasing the fraction of dependent nodes and the group size will enhance the network robustness under Effect 1. On the contrary, these will reduce the network robustness under Effect 2. Meanwhile, we find that the tightness of the network connection will affect the robustness of networks. Furthermore, setting the average degree of network as 8 is enough to keep the network robust.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61174021 and 61473136)
文摘A guidance policy for controller performance enhancement utilizing mobile sensor-actuator networks (MSANs) is proposed for a class of distributed parameter systems (DPSs), which are governed by diffusion partial differential equations (PDEs) with time-dependent spatial domains. Several sufficient conditions for controller performance enhancement are presented. First, the infinite dimensional operator theory is used to derive an abstract evolution equation of the systems under some rational assumptions on the operators, and a static output feedback controller is designed to control the spatial process. Then, based on Lyapunov stability arguments, guidance policies for collocated and non-collocated MSANs are provided to enhance the performance of the proposed controller, which show that the time-dependent characteristic of the spatial domains can significantly affect the design of the mobile scheme. Finally, a simulation example illustrates the effectiveness of the proposed policy.
文摘The paper aims to study the invulnerability of directed interdependent networks with multiple dependency relations: dependent and supportive. We establish three models and simulate in three network systems to deal with this question. To improve network invulnerability, we’d better avoid dependent relations transmission and add supportive relations symmetrically.
基金supported by the National Natural Science Foundation of China (6093400761174059)+1 种基金the Program for New Century Excellent Talents (NCET-08-0359)the Shanghai RisingStar Tracking Program (11QH1401300)
文摘This paper is concerned with controller design of net- worked control systems (NCSs) with both network-induced delay and arbitrary packet dropout. By using a packet-loss-dependent Lyapunov function, sufficient conditions for state/output feedback stabilization and corresponding control laws are derived via a switched system approach. Different from the existing results, the proposed stabilizing controllers design is dependent on the packet loss occurring in the last two transmission intervals due to the network-induced delay. The cone complementary lineara- tion (CCL) methodology is used to solve the non-convex feasibility problem by formulating it into an optimization problem subject to linear matrix inequality (LMI) constraints. Numerical examples and simulations are worked out to demonstrate the effectiveness and validity of the proposed techniques.
基金Project supported by the NBHM Research Project (Grant Nos.2/48(7)/2012/NBHM(R.P.)/R and D II/12669)
文摘In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigated. The sam- pling period is assumed to be time-varying and bounded. The information of probability distribution of the time-varying delay is considered and transformed into parameter matrices of the transferred complex dynamical network model. Based on the condition, the design method of the desired sampled data controller is proposed. By constructing a new Lyapunov functional with triple integral terms, delay-distribution-dependent exponential synchronization criteria are derived in the form of linear matrix inequalities. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.
基金This work is supported by the National Natural Science Foundation of China (No.60674026)the Key Research Foundation of Science and Technology of the Ministry of Education of China (No.107058).
文摘This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functionals are constructed and the linear matrix inequality (LMI) approach and free weighting matrix method are employed to devise some delay-dependent stability criteria which guarantee the existence, uniqueness and global exponential stability of the equilibrium point for all admissible parametric uncertainties. By using Leibniz-Newton formula, free weighting matrices are employed to express this relationship, which implies that the new criteria are less conservative than existing ones. Some examples suggest that the proposed criteria are effective and are an improvement over previous ones.
基金This work was supported by the National Natural Science Foundation of China(No. 60275013).
文摘This paper deals with the problem of delay-dependent stability and stabilization for networked control systems(NCSs)with multiple time-delays. In view of multi-input and multi-output(MIMO) NCSs with many independent sensors and actuators, a continuous time model with distributed time-delays is proposed. Utilizing the Lyapunov stability theory combined with linear matrix inequalities(LMIs) techniques, some new delay-dependent stability criteria for NCSs in terms of generalized Lyapunov matrix equation and LMIs are derived. Stabilizing controller via state feedback is formulated by solving a set of LMIs. Compared with the reported methods, the proposed methods give a less conservative delay bound and more general results. Numerical example and simulation show that the methods are less conservative and more effective.
基金the National Natural Science Foundation of China(No.60275013).
文摘In this paper, delay-dependent robust stability for a class of uncertain networked control systems (NCSs) with multiple state time-delays is investigated. Modeling of multi-input and multi-output (MIMO) NCSs with networkinduced delays and uncertainties through new methods are proposed. Some new stability criteria in terms of LMIs are derived by using Lyapunov stability theory combined with linear matrix inequalities (LMIs) techniques. We analyze the delay-dependent asymptotic stability and obtain maximum allowable delay bound (MADB) for the NCSs with the proposed methods. Compared with the reported results, the proposed results obtain a much less conservative MADB which are more general. Numerical example and simulation is used to illustrate the effectiveness of the proposed methods.