During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing cap...During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing capacity of the pile is quite small before the full freeze-back,the quick refreezing of the native soils surrounding the cast-in-place pile has become the focus of the infrastructure construction in permafrost.To solve this problem,this paper innovatively puts forward the application of the artificial ground freezing(AGF)method at the end of the curing period of cast-in-place piles in permafrost.A field test on the AGF was conducted at the Beiluhe Observation and Research Station of Frozen Soil Engineering and Environment(34°51.2'N,92°56.4'E)in the Qinghai Tibet Plateau(QTP),and then a 3-D numerical model was established to investigate the thermal performance of piles using AGF under different engineering conditions.Additionally,the long-term thermal performance of piles after the completion of AGF under different conditions was estimated.Field experiment results demonstrate that AGF is an effective method to reduce the refreezing time of the soil surrounding the piles constructed in permafrost terrain,with the ability to reduce the pile-soil interface temperatures to below the natural ground temperature within 3 days.Numerical results further prove that AGF still has a good cooling effect even under unfavorable engineering conditions such as high pouring temperature,large pile diameter,and large pile length.Consequently,the application of this method is meaningful to save the subsequent latency time and solve the problem of thermal disturbance in pile construction in permafrost.The research results are highly relevant for the spread of AGF technology and the rapid building of pile foundations in permafrost.展开更多
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3...Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.展开更多
In the construction of the Qinghai-Tibet Power Transmission Line (QTPTL), cast-in-place piles (CIPPs) are widely applied in areas with unfavorable geological conditions. The thermal regime around piles in permafro...In the construction of the Qinghai-Tibet Power Transmission Line (QTPTL), cast-in-place piles (CIPPs) are widely applied in areas with unfavorable geological conditions. The thermal regime around piles in permafrost regions greatly affects the stability of the towers as well as the operation of the QTPTL. The casting of piles will markedly affect the thermal regime of the surrounding permafrost because of the casting temperature and the hydration heat of cement. Based on the typical geological and engineering conditions along the QTPTL, thermal disturbance ofa CIPP to surrounding permafrost under different casting seasons, pile depths, and casting temperatures were simulated. The results show that the casting season (summer versus winter) can influence the refreezing process of CIPPs, within the first 6 m of pile depth. Sixty days after being cast, CIPPs greater than 6 m in depth can be frozen regardless of which season they were cast, and the foundation could be reffozen after a cold season. Comparing the refreezing characteristics of CIPPs cast in different seasons also showed that, without considering the ground surface conditions, warm seasons are more suitable for casting piles. With the increase of pile depth, the thermal effect of a CIPP on the surrounding soil mainly expands vertically, while the lateral heat disturbance changes little. Deeper, longer CIPPs have better stability. The casting temperature clearly affects the thermal disturbance, and the radius of the melting circle increases with rising casting temperature. The optimal casting temperature is between 2 ℃ and 9 ℃.展开更多
Many staircases in reinforced concrete (RC) frame structures suffered severe damage during the Wenchuan earthquake. Elastic analyses for 18 RC structure models with and without staircases are conducted and compared ...Many staircases in reinforced concrete (RC) frame structures suffered severe damage during the Wenchuan earthquake. Elastic analyses for 18 RC structure models with and without staircases are conducted and compared to study the influence of the staircase on the stiffness, displacements and internal forces of the structures. To capture the yielding development and damage mechanism of frame structures, elasto-plastic analysis is carried out for one of the 18 models. Based on the features observed in the analyses, a new type of staircase design i.e., isolating them from the master structure to eliminate the effect of K-type struts, is proposed and discussed. It is concluded that the proposed method of staircase isolation is effective and feasible for engineering design, and does not significantly increase the construction cost.展开更多
Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies i...Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies indicated that this method is too conservative. Only when the pile cap is elevated from the ground level,the raft bearing contribution can be neglected. In a piled raft foundation, pileesoileraft interaction is complicated. Although several numerical studies have been carried out to analyze the behaviors of piled raft foundations, very few experimental studies are reported in the literature. The available laboratory studies mainly focused on steel piles. The present study aims to compare the behaviors of piled raft foundations with free-standing pile groups in sand, using laboratory physical models. Cast-in-place concrete piles and concrete raft are used for the tests. The tests are conducted on single pile, single pile in pile group, unpiled raft, free-standing pile group and piled raft foundation. We examine the effects of the number of piles, the pile installation method and the interaction between different components of foundation. The results indicate that the ultimate bearing capacity of the piled raft foundation is considerably higher than that of the free-standing pile group with the same number of piles. With installation of the single pile in the group, the pile bearing capacity and stiffness increase. Installation of the piles beneath the raft decreases the bearing capacity of the raft. When the raft bearing capacity is not included in the design process, the allowable bearing capacity of the piled raft is underestimated by more than 200%. This deviation intensifies with increasing spacing of the piles.展开更多
The bearing capacity of pile foundations is affected by the temperature of the frozen soil around pile foundations.The construction process and the hydration heat of cast-in-place(CIP)pile foundations affect the therm...The bearing capacity of pile foundations is affected by the temperature of the frozen soil around pile foundations.The construction process and the hydration heat of cast-in-place(CIP)pile foundations affect the thermal stability of permafrost.In this paper,temperature data from inside multiple CIP piles,borehole observations of ground thermal status adjacent to the foundations and local weather stations were monitored in warm permafrost regions to study the thermal influence process of CIP pile foundations.The following conclusions are drawn from the field observation data.(1)The early temperature change process of different CIP piles is different,and the differences gradually diminish over time.(2)The initial concrete temperature is linearly related with the air temperature,net radiation and wind speed within 1 h before the completion of concrete pouring;the contributions of the air temperature,net radiation,and wind speed to the initial concrete temperature are 51.9%,20.3%and 27.9%,respectively.(3)The outer boundary of the thermal disturbance annulus is approximately 2 m away from the pile center.It took more than 224 days for the soil around the CIP piles to return to the natural permafrost temperature at the study site.展开更多
The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on sin...The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on single piles with different forms of pile shoes and on their composite foundations were analyzed. The distribution patterns of axial force, shaft friction and toe resistance were studied based on the measurements taken from buried strain gauges. From the point of engineering application, the pile has merits in convenient quality control, high bearing capacity and reliable quality, showing higher reasonability, advancement and suitability than other ground improvement methods. The pile can be adopted properly to take place of ordinary ground improvement method, achieving greater economical and social benefits.展开更多
The high and large span cast-in-place reinforced concrete cantilever structure of the office building of some court, which is located I-steel at the cantilever and used steel pipe scaffold as the support, has guarante...The high and large span cast-in-place reinforced concrete cantilever structure of the office building of some court, which is located I-steel at the cantilever and used steel pipe scaffold as the support, has guaranteed the frame body and structure security by the frame body calculating, on-site test and reasonable construction order.展开更多
BACKGROUND Depression is a prevalent psychological issue in adolescents that is significantly related to negative life events(NLEs)and dysfunctional attitudes.High levels of social support can significantly buffer NLE...BACKGROUND Depression is a prevalent psychological issue in adolescents that is significantly related to negative life events(NLEs)and dysfunctional attitudes.High levels of social support can significantly buffer NLEs’effect on depression.Currently,there is limited research on how social support moderates the relationship between NLEs,dysfunctional attitudes,and depression in adolescents in China.It is imperative to investigate this moderating effect to mitigate dysfunctional attitudes in adolescent undergoing depressive mood,ultimately enhancing their overall mental health.AIM To investigate the relationship and underlying mechanisms between specific dysfunctional attitudes,social support,and depression among Chinese adolescents.METHODS This is a cross-sectional study which selected five middle schools in Shandong Province for investigation in March 2022.Participants included 795 adolescents(49.87%male,mage=15.15,SD=1.84,age range=11-18 years old).All participants completed the Dysfunctional Attitude Scale,Adolescent Life Event Scale,Beck Depression Inventory,and Social Support Rating Scale.A moderated mediation model was conducted to examine the relationship between specific dysfunctional attitudes,social support,and depression.RESULTS Results indicated that NLEs affected depression through the mediating role of specific dysfunctional attitudes(autonomy attitudesβ=0.21;perfectionismβ=0.25).Moreover,social support was found to moderate the mediating effect between NLEs,specific dysfunctional attitudes,and depressive symptoms(autonomy attitudes b2=-0.08;perfectionism b2=-0.09).CONCLUSION Dysfunctional attitudes mediated and social support moderated the relationship between NLEs and depression.Social support can buffer depression symptoms among adolescents with autonomy attitudes and perfectionism.展开更多
The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric d...The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data.展开更多
To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockb...To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.展开更多
The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct ...The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal.展开更多
The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate(ATP)by supporting cells in the Kölliker’s organ.However,the mechani...The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate(ATP)by supporting cells in the Kölliker’s organ.However,the mechanisms responsible for initiating spontaneous ATP release have not been determined.Our previous study revealed that telomerase reverse transcriptase(TERT)is expressed in the basilar membrane during the first postnatal week.Its role in cochlear development remains unclear.In this study,we investigated the expression and role of TERT in postnatal cochlea supporting cells.Our results revealed that in postnatal cochlear Kölliker’s organ supporting cells,TERT shifts from the nucleus into the cytoplasm over time.We found that the TERT translocation tendency in postnatal cochlear supporting cells in vitro coincided with that observed in vivo.Further analysis showed that TERT in the cytoplasm was mainly located in mitochondria in the absence of oxidative stress or apoptosis,suggesting that TERT in mitochondria plays roles other than antioxidant or anti-apoptotic functions.We observed increased ATP synthesis,release and activation of purine signaling systems in supporting cells during the first 10 postnatal days.The phenomenon that TERT translocation coincided with changes in ATP synthesis,release and activation of the purine signaling system in postnatal cochlear supporting cells suggested that TERT may be involved in regulating ATP release and activation of the purine signaling system.Our study provides a new research direction for exploring the spontaneous electrical activity of the cochlea during the early postnatal period.展开更多
The inner ear sensory epithelium consists of two major types of cells:hair cells(HCs)and supporting cells(SCs).Critical functions of HCs in the perception of mechanical stimulation and mechanosensory transduction have...The inner ear sensory epithelium consists of two major types of cells:hair cells(HCs)and supporting cells(SCs).Critical functions of HCs in the perception of mechanical stimulation and mechanosensory transduction have long been elucidated.SCs are indispensable components of the sensory epithelia,and they maintain the structural integrity and ionic environment of the inner ear.Once delicate inner ear epithelia sustain injuries(for example,due to ototoxic drugs or noise exposure),SCs respond immediately to serve as repairers of the epithelium and as adapters to become HC progenitors,aiming at morphological and functional recovery of the inner ear.This regenerative process is extensive in non-mammals,but is limited in the mammalian inner ear,especially in the mature cochlea.This review aimed to discuss the important roles of SCs in the repair of the mammalian inner ear.展开更多
Objective: Describe the status quo of self-disclosure and social support in breast cancer patients and analyze the correlation between them. Methods: General data questionnaire, distress disclosure Index scale and Chi...Objective: Describe the status quo of self-disclosure and social support in breast cancer patients and analyze the correlation between them. Methods: General data questionnaire, distress disclosure Index scale and Chinese version of medical social support scale were used to investigate the correlation between self-disclosure and social support in breast cancer patients by Pearson correlation analysis. Results: 1) The total self-disclosure score was (38.75 ± 9.18);the total score of social support was (70.57 ± 14.04) scores, including emotional information support dimension (28.39 ± 6.06) scores, practical support dimension (15.62 ± 3.31) scores, elastic support dimension (14.85 ± 3.23) scores, and emotional support dimension (11.70 ± 2.56) scores. 2) Self-disclosure was positively correlated with social support (r = 0.433, p Conclusion: Breast cancer patients had a moderate level of self-disclosure, and the higher the level of self-disclosure, the better the social support. It is suggested that improving the self-disclosure level of breast cancer patients can help them obtain more social support.展开更多
5-Hydroxymethylfurfural(5-HMF)is one of the important bio-based platform compounds,and the catalytic conversion of glucose to 5-HMF is a highly desirable approach that is receiving increasing attention.Herein,we repor...5-Hydroxymethylfurfural(5-HMF)is one of the important bio-based platform compounds,and the catalytic conversion of glucose to 5-HMF is a highly desirable approach that is receiving increasing attention.Herein,we reported the synthesis of lignin-derived carbon supported tin oxides(SnOx/LC)catalyst via a two-step hydrothermal-pyrolytic method using wheat straw alkali lignin as a cost-effective carbon source with high carbon content.The key preparation conditions of the catalyst and its catalytic conditions for the conversion of glucose to 5-HMF were investigated,respectively.Results show that under the preparation conditions of tin tetrachloride dosage of 3.0 mmol and pyrolysis temperature of 500 ℃,the optimized catalyst(3.0-SnOx/LC-500)with a high yield of 63.4%exhibits good catalytic performance of 5-HMF yield of 50.1%and reaction selectivity of 86.0%under the optimum conditions of reaction temperature and time of 190 ℃ and 3 h,initial glucose concentration of 10%(mass),3.0-SnOx/LC-500 dosage of 100 mg in a biphasic solvent system of volume ratio of water to tetrahydrofuran of 1:4.In addition,3.0-SnOx/LC-500 exerts an excellent reusability in a five-cycle experiment.Furthermore,SnOx/LC was characterized in detail using X-ray diffraction patterns(XRD),X-ray photoelectron spectroscopy(XPS),Brunauer-Emmett-Teller(BET),ammonia temperature-programmed-desorption(NH3-TPD),pyridine adsorption infrared spectroscopy(Py-FTIR),scanning electron microscope(SEM)and thermal gravimetric analysis(TGA).Results indicate that Brønsted acid sites and Lewis acid sites coexist on 3.0-SnOx/LC-500,and more Sn^(4+),as well as a proper ratio of weak acidity to medium acidity,are conductive to its catalytic performance in glucose-to-5-HMF reaction.展开更多
This study explores the perspectives and challenges faced by family members providing mental support to cancer patients in Beijing,China.The primary objective is to understand the emotional and practical roles family ...This study explores the perspectives and challenges faced by family members providing mental support to cancer patients in Beijing,China.The primary objective is to understand the emotional and practical roles family members undertake and the difficulties they encounter.Utilizing a qualitative research design,data were collected through semi-structured interviews with family caregivers of cancer patients.Thematic analysis revealed several key themes:the dual burden of emotional support and caregiving responsibilities,the impact on daily life and personal well-being,the role and effectiveness of external support systems,perceptions of medical staff support,and the common challenges and conflicts faced in caregiving.The findings highlight the critical need for comprehensive support systems that address both the emotional and practical needs of family caregivers.Recommendations for enhancing family-centered support programs in oncology settings are discussed.展开更多
Aqueous-phase reforming(APR)is an attractive process to produce bio-based hydrogen from waste biomass streams,during which the catalyst stability is often challenged due to the harsh reaction conditions.In this work,t...Aqueous-phase reforming(APR)is an attractive process to produce bio-based hydrogen from waste biomass streams,during which the catalyst stability is often challenged due to the harsh reaction conditions.In this work,three Pt-based catalysts supported on C,AlO(OH),and ZrO_(2)were investigated for the APR of hydroxyacetone solution in afixed bed reactor at 225℃and 35 bar.Among them,the Pt/C catalyst showed the highest turnover frequency for H_(2)production(TOF of 8.9 molH_(2)molPt^(-1)min^(-1))and the longest catalyst stability.Over the AlO(OH)and ZrO_(2)supported Pt catalysts,the side reactions consuming H_(2),formation of coke,and Pt sintering result in a low H_(2)production and the fast catalyst deactivation.The proposed reaction pathways suggest that a promising APR catalyst should reform all oxygenates in the aqueous phase,minimize the hydrogenation of the oxygenates,maximize the WGS reaction,and inhibit the condensation and coking reactions for maximizing the hydrogen yield and a stable catalytic performance.展开更多
Metal nanoaggregates can simultaneously enhance the activity and stability of Fe-N-C catalysts in proton-exchange-membrane fuel cells(PEMFC).Previous studies on the relevant mechanism have focused on the direct intera...Metal nanoaggregates can simultaneously enhance the activity and stability of Fe-N-C catalysts in proton-exchange-membrane fuel cells(PEMFC).Previous studies on the relevant mechanism have focused on the direct interaction between FeN_(4)active sites and metal nanoaggregates.However,the role of carbon support that hosts metal nanoaggregates and active sites has been overlooked.Here,a Fe-N-C catalyst encapsulating inactive gold nanoparticles is prepared as a model catalyst to investigate the electronic tuning of Au nanoparticles(NPs)towards the carbon support.Au NPs donate electrons to carbon support,making it rich inπelectrons,which reduces the work function and regulates the electronic configuration of the FeN_(4)sites for an enhanced ORR activity.Meanwhile,the electron-rich carbon support can mitigate the electron depletion of FeN_(4)sites caused by carbon support oxidation,thereby preserving its high activity.The yield and accumulation of H_(2)O_(2)are thus alleviated,which delays the oxidation of the catalyst and benefits the stability.Due to the electron-rich carbon support,the composite catalyst achieves a top-level peak power density of 0.74 W/cm^(2) in a 1.5 bar H_(2)-air PEMFC,as well as the improved stability.This work elucidates the key role of carbon support in the performance enhancement of the FeN-C/metal nanoaggregate composite catalysts for fuel cell application.展开更多
To enhance flow stability and reduce hydrodynamic noise caused by fluctuating pressure,a quasiperiodic elastic support skin composed of flexible walls and elastic support elements is proposed for fluid noise reduction...To enhance flow stability and reduce hydrodynamic noise caused by fluctuating pressure,a quasiperiodic elastic support skin composed of flexible walls and elastic support elements is proposed for fluid noise reduction.The arrangement of the elastic support element is determined by the equivalent periodic distance and quasi-periodic coefficient.In this paper,a dynamic model of skin in a fluid environment is established.The influence of equivalent periodic distance and quasi-periodic coefficient on flow stability is investigated.The results suggest that arranging the elastic support elements in accordance with the quasi-periodic law can effectively enhance flow stability.Meanwhile,the hydrodynamic noise calculation results demonstrate that the skin exhibits excellent noise reduction performance,with reductions of 10 dB in the streamwise direction,11 dB in the spanwise direction,and 10 dB in the normal direction.The results also demonstrate that the stability analysis method can serve as a diagnostic tool for flow fields and guide the design of noise reduction structures.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42071095)the Program of the State Key Laboratory of Frozen Soil Engineering(Grant No.SKLFSE-ZQ-59)+1 种基金the Science and Technology Project of Gansu Province(Grant No.22JR5RA086)the Science and Technology Research and Development Program of the Qinghai-Tibet Group Corporation(Grant No.QZ2022-G02).
文摘During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing capacity of the pile is quite small before the full freeze-back,the quick refreezing of the native soils surrounding the cast-in-place pile has become the focus of the infrastructure construction in permafrost.To solve this problem,this paper innovatively puts forward the application of the artificial ground freezing(AGF)method at the end of the curing period of cast-in-place piles in permafrost.A field test on the AGF was conducted at the Beiluhe Observation and Research Station of Frozen Soil Engineering and Environment(34°51.2'N,92°56.4'E)in the Qinghai Tibet Plateau(QTP),and then a 3-D numerical model was established to investigate the thermal performance of piles using AGF under different engineering conditions.Additionally,the long-term thermal performance of piles after the completion of AGF under different conditions was estimated.Field experiment results demonstrate that AGF is an effective method to reduce the refreezing time of the soil surrounding the piles constructed in permafrost terrain,with the ability to reduce the pile-soil interface temperatures to below the natural ground temperature within 3 days.Numerical results further prove that AGF still has a good cooling effect even under unfavorable engineering conditions such as high pouring temperature,large pile diameter,and large pile length.Consequently,the application of this method is meaningful to save the subsequent latency time and solve the problem of thermal disturbance in pile construction in permafrost.The research results are highly relevant for the spread of AGF technology and the rapid building of pile foundations in permafrost.
基金Research Institute for Smart Energy(CDB2)the grant from the Research Institute for Advanced Manufacturing(CD8Z)+4 种基金the grant from the Carbon Neutrality Funding Scheme(WZ2R)at The Hong Kong Polytechnic Universitysupport from the Hong Kong Polytechnic University(CD9B,CDBZ and WZ4Q)the National Natural Science Foundation of China(22205187)Shenzhen Municipal Science and Technology Innovation Commission(JCYJ20230807140402006)Start-up Foundation for Introducing Talent of NUIST and Natural Science Foundation of Jiangsu Province of China(BK20230426).
文摘Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.
基金supported by the National Key Basic Research Program of China (973 Program) (No.2012CB026106)the National Natural Science Foundation of China (Grant No. 41171059)the Fund of the State Key Laboratory of Frozen Soil Engineering (No. SKLFSE-ZY-16)
文摘In the construction of the Qinghai-Tibet Power Transmission Line (QTPTL), cast-in-place piles (CIPPs) are widely applied in areas with unfavorable geological conditions. The thermal regime around piles in permafrost regions greatly affects the stability of the towers as well as the operation of the QTPTL. The casting of piles will markedly affect the thermal regime of the surrounding permafrost because of the casting temperature and the hydration heat of cement. Based on the typical geological and engineering conditions along the QTPTL, thermal disturbance ofa CIPP to surrounding permafrost under different casting seasons, pile depths, and casting temperatures were simulated. The results show that the casting season (summer versus winter) can influence the refreezing process of CIPPs, within the first 6 m of pile depth. Sixty days after being cast, CIPPs greater than 6 m in depth can be frozen regardless of which season they were cast, and the foundation could be reffozen after a cold season. Comparing the refreezing characteristics of CIPPs cast in different seasons also showed that, without considering the ground surface conditions, warm seasons are more suitable for casting piles. With the increase of pile depth, the thermal effect of a CIPP on the surrounding soil mainly expands vertically, while the lateral heat disturbance changes little. Deeper, longer CIPPs have better stability. The casting temperature clearly affects the thermal disturbance, and the radius of the melting circle increases with rising casting temperature. The optimal casting temperature is between 2 ℃ and 9 ℃.
基金The National Key Technologies R&D Program under Grant No. 2009BAJ28B01The Technologies R&D Program of China State Construction Engineering Co., Ltd under Grant No. CSCEC-2009-Z-15
文摘Many staircases in reinforced concrete (RC) frame structures suffered severe damage during the Wenchuan earthquake. Elastic analyses for 18 RC structure models with and without staircases are conducted and compared to study the influence of the staircase on the stiffness, displacements and internal forces of the structures. To capture the yielding development and damage mechanism of frame structures, elasto-plastic analysis is carried out for one of the 18 models. Based on the features observed in the analyses, a new type of staircase design i.e., isolating them from the master structure to eliminate the effect of K-type struts, is proposed and discussed. It is concluded that the proposed method of staircase isolation is effective and feasible for engineering design, and does not significantly increase the construction cost.
文摘Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies indicated that this method is too conservative. Only when the pile cap is elevated from the ground level,the raft bearing contribution can be neglected. In a piled raft foundation, pileesoileraft interaction is complicated. Although several numerical studies have been carried out to analyze the behaviors of piled raft foundations, very few experimental studies are reported in the literature. The available laboratory studies mainly focused on steel piles. The present study aims to compare the behaviors of piled raft foundations with free-standing pile groups in sand, using laboratory physical models. Cast-in-place concrete piles and concrete raft are used for the tests. The tests are conducted on single pile, single pile in pile group, unpiled raft, free-standing pile group and piled raft foundation. We examine the effects of the number of piles, the pile installation method and the interaction between different components of foundation. The results indicate that the ultimate bearing capacity of the piled raft foundation is considerably higher than that of the free-standing pile group with the same number of piles. With installation of the single pile in the group, the pile bearing capacity and stiffness increase. Installation of the piles beneath the raft decreases the bearing capacity of the raft. When the raft bearing capacity is not included in the design process, the allowable bearing capacity of the piled raft is underestimated by more than 200%. This deviation intensifies with increasing spacing of the piles.
基金supported by the Natural Science Foundation of China (Grants No.41101065)the State Key Laboratory of Frozen Soil Engineering Funds (SKLFSE-ZT-34,SKLFSE-ZQ-202103).
文摘The bearing capacity of pile foundations is affected by the temperature of the frozen soil around pile foundations.The construction process and the hydration heat of cast-in-place(CIP)pile foundations affect the thermal stability of permafrost.In this paper,temperature data from inside multiple CIP piles,borehole observations of ground thermal status adjacent to the foundations and local weather stations were monitored in warm permafrost regions to study the thermal influence process of CIP pile foundations.The following conclusions are drawn from the field observation data.(1)The early temperature change process of different CIP piles is different,and the differences gradually diminish over time.(2)The initial concrete temperature is linearly related with the air temperature,net radiation and wind speed within 1 h before the completion of concrete pouring;the contributions of the air temperature,net radiation,and wind speed to the initial concrete temperature are 51.9%,20.3%and 27.9%,respectively.(3)The outer boundary of the thermal disturbance annulus is approximately 2 m away from the pile center.It took more than 224 days for the soil around the CIP piles to return to the natural permafrost temperature at the study site.
基金Project (2007H03) supported by Communications Department of Zhejiang Province
文摘The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on single piles with different forms of pile shoes and on their composite foundations were analyzed. The distribution patterns of axial force, shaft friction and toe resistance were studied based on the measurements taken from buried strain gauges. From the point of engineering application, the pile has merits in convenient quality control, high bearing capacity and reliable quality, showing higher reasonability, advancement and suitability than other ground improvement methods. The pile can be adopted properly to take place of ordinary ground improvement method, achieving greater economical and social benefits.
文摘The high and large span cast-in-place reinforced concrete cantilever structure of the office building of some court, which is located I-steel at the cantilever and used steel pipe scaffold as the support, has guaranteed the frame body and structure security by the frame body calculating, on-site test and reasonable construction order.
基金Supported by City Science and Technology Development Project in Jining,No.2021YXNS049,No.2022YXNS100,No.2022YXNS102,and No.2022YXNS109。
文摘BACKGROUND Depression is a prevalent psychological issue in adolescents that is significantly related to negative life events(NLEs)and dysfunctional attitudes.High levels of social support can significantly buffer NLEs’effect on depression.Currently,there is limited research on how social support moderates the relationship between NLEs,dysfunctional attitudes,and depression in adolescents in China.It is imperative to investigate this moderating effect to mitigate dysfunctional attitudes in adolescent undergoing depressive mood,ultimately enhancing their overall mental health.AIM To investigate the relationship and underlying mechanisms between specific dysfunctional attitudes,social support,and depression among Chinese adolescents.METHODS This is a cross-sectional study which selected five middle schools in Shandong Province for investigation in March 2022.Participants included 795 adolescents(49.87%male,mage=15.15,SD=1.84,age range=11-18 years old).All participants completed the Dysfunctional Attitude Scale,Adolescent Life Event Scale,Beck Depression Inventory,and Social Support Rating Scale.A moderated mediation model was conducted to examine the relationship between specific dysfunctional attitudes,social support,and depression.RESULTS Results indicated that NLEs affected depression through the mediating role of specific dysfunctional attitudes(autonomy attitudesβ=0.21;perfectionismβ=0.25).Moreover,social support was found to moderate the mediating effect between NLEs,specific dysfunctional attitudes,and depressive symptoms(autonomy attitudes b2=-0.08;perfectionism b2=-0.09).CONCLUSION Dysfunctional attitudes mediated and social support moderated the relationship between NLEs and depression.Social support can buffer depression symptoms among adolescents with autonomy attitudes and perfectionism.
基金financial support from the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0708)the National Natural Science Foundation of China(No.41941018)the Special Fund of Yueqi Scholars(No.800015Z1207).
文摘The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data.
基金funding support from the Fundamental Research Funds for the Central Universities(Grant No.2023JBZY024)the National Natural Science Foundation of China(Grant Nos.52208382 and 52278387).
文摘To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.
基金supported by Distinguished Youth Funds of National Natural Science Foundation of China (No.51925402)National Natural Science Foundation of China (Nos.51904203 and 52174125)+4 种基金the China Postdoctoral Science Foundation (No.2021M702049)the Tencent Foundation or XPLORER PRIZEShanxi Science and Technology Major Project Funds (No.20201102004)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (No.2021SX-TD001)Open Fund Research Project Supported by State Key Laboratory of Strata Intelligent Control and Green Mining Co-founded by Shandong Province and the Ministry of Science and Technology (No.SICGM202209)。
文摘The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal.
基金supported by the National Natural Science Foundation of China,Nos.81870732(to DZ),82171161(to DZ),81900933(to YS),and 82000978(to ZL).
文摘The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate(ATP)by supporting cells in the Kölliker’s organ.However,the mechanisms responsible for initiating spontaneous ATP release have not been determined.Our previous study revealed that telomerase reverse transcriptase(TERT)is expressed in the basilar membrane during the first postnatal week.Its role in cochlear development remains unclear.In this study,we investigated the expression and role of TERT in postnatal cochlea supporting cells.Our results revealed that in postnatal cochlear Kölliker’s organ supporting cells,TERT shifts from the nucleus into the cytoplasm over time.We found that the TERT translocation tendency in postnatal cochlear supporting cells in vitro coincided with that observed in vivo.Further analysis showed that TERT in the cytoplasm was mainly located in mitochondria in the absence of oxidative stress or apoptosis,suggesting that TERT in mitochondria plays roles other than antioxidant or anti-apoptotic functions.We observed increased ATP synthesis,release and activation of purine signaling systems in supporting cells during the first 10 postnatal days.The phenomenon that TERT translocation coincided with changes in ATP synthesis,release and activation of the purine signaling system in postnatal cochlear supporting cells suggested that TERT may be involved in regulating ATP release and activation of the purine signaling system.Our study provides a new research direction for exploring the spontaneous electrical activity of the cochlea during the early postnatal period.
基金supported by the National Natural Science Foundation of China(grant number 82371139,82371138,82101210 and 82171131)Beijing Hospital Authority Youth Program(grant number QML20230121).
文摘The inner ear sensory epithelium consists of two major types of cells:hair cells(HCs)and supporting cells(SCs).Critical functions of HCs in the perception of mechanical stimulation and mechanosensory transduction have long been elucidated.SCs are indispensable components of the sensory epithelia,and they maintain the structural integrity and ionic environment of the inner ear.Once delicate inner ear epithelia sustain injuries(for example,due to ototoxic drugs or noise exposure),SCs respond immediately to serve as repairers of the epithelium and as adapters to become HC progenitors,aiming at morphological and functional recovery of the inner ear.This regenerative process is extensive in non-mammals,but is limited in the mammalian inner ear,especially in the mature cochlea.This review aimed to discuss the important roles of SCs in the repair of the mammalian inner ear.
文摘Objective: Describe the status quo of self-disclosure and social support in breast cancer patients and analyze the correlation between them. Methods: General data questionnaire, distress disclosure Index scale and Chinese version of medical social support scale were used to investigate the correlation between self-disclosure and social support in breast cancer patients by Pearson correlation analysis. Results: 1) The total self-disclosure score was (38.75 ± 9.18);the total score of social support was (70.57 ± 14.04) scores, including emotional information support dimension (28.39 ± 6.06) scores, practical support dimension (15.62 ± 3.31) scores, elastic support dimension (14.85 ± 3.23) scores, and emotional support dimension (11.70 ± 2.56) scores. 2) Self-disclosure was positively correlated with social support (r = 0.433, p Conclusion: Breast cancer patients had a moderate level of self-disclosure, and the higher the level of self-disclosure, the better the social support. It is suggested that improving the self-disclosure level of breast cancer patients can help them obtain more social support.
基金supported by the independent research major project of Key Laboratory of Biomass Energy and Materials of Jiangsu Province, China (JSBEM-S-202202)the key project of Science and Technology Plan of Nanping, China (N2022B002)the Open Research Fund of Academy of Advanced Carbon Conversion Technology, Huaqiao University, China
文摘5-Hydroxymethylfurfural(5-HMF)is one of the important bio-based platform compounds,and the catalytic conversion of glucose to 5-HMF is a highly desirable approach that is receiving increasing attention.Herein,we reported the synthesis of lignin-derived carbon supported tin oxides(SnOx/LC)catalyst via a two-step hydrothermal-pyrolytic method using wheat straw alkali lignin as a cost-effective carbon source with high carbon content.The key preparation conditions of the catalyst and its catalytic conditions for the conversion of glucose to 5-HMF were investigated,respectively.Results show that under the preparation conditions of tin tetrachloride dosage of 3.0 mmol and pyrolysis temperature of 500 ℃,the optimized catalyst(3.0-SnOx/LC-500)with a high yield of 63.4%exhibits good catalytic performance of 5-HMF yield of 50.1%and reaction selectivity of 86.0%under the optimum conditions of reaction temperature and time of 190 ℃ and 3 h,initial glucose concentration of 10%(mass),3.0-SnOx/LC-500 dosage of 100 mg in a biphasic solvent system of volume ratio of water to tetrahydrofuran of 1:4.In addition,3.0-SnOx/LC-500 exerts an excellent reusability in a five-cycle experiment.Furthermore,SnOx/LC was characterized in detail using X-ray diffraction patterns(XRD),X-ray photoelectron spectroscopy(XPS),Brunauer-Emmett-Teller(BET),ammonia temperature-programmed-desorption(NH3-TPD),pyridine adsorption infrared spectroscopy(Py-FTIR),scanning electron microscope(SEM)and thermal gravimetric analysis(TGA).Results indicate that Brønsted acid sites and Lewis acid sites coexist on 3.0-SnOx/LC-500,and more Sn^(4+),as well as a proper ratio of weak acidity to medium acidity,are conductive to its catalytic performance in glucose-to-5-HMF reaction.
文摘This study explores the perspectives and challenges faced by family members providing mental support to cancer patients in Beijing,China.The primary objective is to understand the emotional and practical roles family members undertake and the difficulties they encounter.Utilizing a qualitative research design,data were collected through semi-structured interviews with family caregivers of cancer patients.Thematic analysis revealed several key themes:the dual burden of emotional support and caregiving responsibilities,the impact on daily life and personal well-being,the role and effectiveness of external support systems,perceptions of medical staff support,and the common challenges and conflicts faced in caregiving.The findings highlight the critical need for comprehensive support systems that address both the emotional and practical needs of family caregivers.Recommendations for enhancing family-centered support programs in oncology settings are discussed.
基金support from European Union Seventh Frame-work Programme(FP7/2007-2013 project SusFuelCat,grant No.310490)is acknowledged.
文摘Aqueous-phase reforming(APR)is an attractive process to produce bio-based hydrogen from waste biomass streams,during which the catalyst stability is often challenged due to the harsh reaction conditions.In this work,three Pt-based catalysts supported on C,AlO(OH),and ZrO_(2)were investigated for the APR of hydroxyacetone solution in afixed bed reactor at 225℃and 35 bar.Among them,the Pt/C catalyst showed the highest turnover frequency for H_(2)production(TOF of 8.9 molH_(2)molPt^(-1)min^(-1))and the longest catalyst stability.Over the AlO(OH)and ZrO_(2)supported Pt catalysts,the side reactions consuming H_(2),formation of coke,and Pt sintering result in a low H_(2)production and the fast catalyst deactivation.The proposed reaction pathways suggest that a promising APR catalyst should reform all oxygenates in the aqueous phase,minimize the hydrogenation of the oxygenates,maximize the WGS reaction,and inhibit the condensation and coking reactions for maximizing the hydrogen yield and a stable catalytic performance.
基金supported by the Natural Science Foundation of Beijing Municipality (Z200012)the National Natural Science Foundation of China (U21A20328,22225903)the National Key Research and Development Program of China (2021YFB4000601)。
文摘Metal nanoaggregates can simultaneously enhance the activity and stability of Fe-N-C catalysts in proton-exchange-membrane fuel cells(PEMFC).Previous studies on the relevant mechanism have focused on the direct interaction between FeN_(4)active sites and metal nanoaggregates.However,the role of carbon support that hosts metal nanoaggregates and active sites has been overlooked.Here,a Fe-N-C catalyst encapsulating inactive gold nanoparticles is prepared as a model catalyst to investigate the electronic tuning of Au nanoparticles(NPs)towards the carbon support.Au NPs donate electrons to carbon support,making it rich inπelectrons,which reduces the work function and regulates the electronic configuration of the FeN_(4)sites for an enhanced ORR activity.Meanwhile,the electron-rich carbon support can mitigate the electron depletion of FeN_(4)sites caused by carbon support oxidation,thereby preserving its high activity.The yield and accumulation of H_(2)O_(2)are thus alleviated,which delays the oxidation of the catalyst and benefits the stability.Due to the electron-rich carbon support,the composite catalyst achieves a top-level peak power density of 0.74 W/cm^(2) in a 1.5 bar H_(2)-air PEMFC,as well as the improved stability.This work elucidates the key role of carbon support in the performance enhancement of the FeN-C/metal nanoaggregate composite catalysts for fuel cell application.
基金National Natural Science Foundation of China(Grant Nos.52075111,51775123)Fundamental Research Funds for the Central Universities(Grant No.3072022JC0701)。
文摘To enhance flow stability and reduce hydrodynamic noise caused by fluctuating pressure,a quasiperiodic elastic support skin composed of flexible walls and elastic support elements is proposed for fluid noise reduction.The arrangement of the elastic support element is determined by the equivalent periodic distance and quasi-periodic coefficient.In this paper,a dynamic model of skin in a fluid environment is established.The influence of equivalent periodic distance and quasi-periodic coefficient on flow stability is investigated.The results suggest that arranging the elastic support elements in accordance with the quasi-periodic law can effectively enhance flow stability.Meanwhile,the hydrodynamic noise calculation results demonstrate that the skin exhibits excellent noise reduction performance,with reductions of 10 dB in the streamwise direction,11 dB in the spanwise direction,and 10 dB in the normal direction.The results also demonstrate that the stability analysis method can serve as a diagnostic tool for flow fields and guide the design of noise reduction structures.