In several previous studies,it was reported that a supported pipe with small geometric imperfections would lose stability when the internal flow velocity became sufficiently high.Recently,however,it has become clear t...In several previous studies,it was reported that a supported pipe with small geometric imperfections would lose stability when the internal flow velocity became sufficiently high.Recently,however,it has become clear that this conclusion may be at best incomplete.A reevaluation of the problem is undertaken here by essentially considering the flow-induced static deformation of a pipe.With the aid of the absolute nodal coordinate formulation(ANCF)and the extended Lagrange equations for dynamical systems containing non-material volumes,the nonlinear governing equations of a pipe with three different geometric imperfections are introduced and formulated.Based on extensive numerical calculations,the static equilibrium configuration,the stability,and the nonlinear dynamics of the considered pipe system are determined and analyzed.The results show that for a supported pipe with the geometric imperfection of a half sinusoidal wave,the dynamical system could not lose stability even if the flow velocity reaches an extremely high value of 40.However,for a supported pipe with the geometric imperfection of one or one and a half sinusoidal waves,the first-mode buckling instability would take place at high flow velocity.Moreover,based on a further parametric analysis,the effects of the amplitude of the geometric imperfection and the aspect ratio of the pipe on the static deformation,the critical flow velocity for buckling instability,and the nonlinear responses of the supported pipes with geometric imperfections are analyzed.展开更多
The effects of the supported angle on the stability and dynamical bifurcations of an inclined cantilevered pipe conveying fluid are investigated. First, a theoretical model of the pipe is developed through the force b...The effects of the supported angle on the stability and dynamical bifurcations of an inclined cantilevered pipe conveying fluid are investigated. First, a theoretical model of the pipe is developed through the force balance and stress-strain relationship. Second, the response surfaces, stability, and critical lines of the typical hanging system (H-S) and standing system (S-S) are discussed based on the modal analysis. Last, the bifurcation diagrams of the pipe are presented for different supported angles. It is shown that pipes will undergo a series of bifurcation processes and show rich dynamic phenomena such as buckling, Hopf bifurcation, period-doubling bifurcation, chaotic motion, and divergence motion.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11972167,12072119)the Alexander von Humboldt Foundation。
文摘In several previous studies,it was reported that a supported pipe with small geometric imperfections would lose stability when the internal flow velocity became sufficiently high.Recently,however,it has become clear that this conclusion may be at best incomplete.A reevaluation of the problem is undertaken here by essentially considering the flow-induced static deformation of a pipe.With the aid of the absolute nodal coordinate formulation(ANCF)and the extended Lagrange equations for dynamical systems containing non-material volumes,the nonlinear governing equations of a pipe with three different geometric imperfections are introduced and formulated.Based on extensive numerical calculations,the static equilibrium configuration,the stability,and the nonlinear dynamics of the considered pipe system are determined and analyzed.The results show that for a supported pipe with the geometric imperfection of a half sinusoidal wave,the dynamical system could not lose stability even if the flow velocity reaches an extremely high value of 40.However,for a supported pipe with the geometric imperfection of one or one and a half sinusoidal waves,the first-mode buckling instability would take place at high flow velocity.Moreover,based on a further parametric analysis,the effects of the amplitude of the geometric imperfection and the aspect ratio of the pipe on the static deformation,the critical flow velocity for buckling instability,and the nonlinear responses of the supported pipes with geometric imperfections are analyzed.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.51221004)the National Natural Science Foundation of China(Nos.11172260,11072213,and 51375434)the Higher School Specialized Research Fund for the Doctoral Program(No.20110101110016)
文摘The effects of the supported angle on the stability and dynamical bifurcations of an inclined cantilevered pipe conveying fluid are investigated. First, a theoretical model of the pipe is developed through the force balance and stress-strain relationship. Second, the response surfaces, stability, and critical lines of the typical hanging system (H-S) and standing system (S-S) are discussed based on the modal analysis. Last, the bifurcation diagrams of the pipe are presented for different supported angles. It is shown that pipes will undergo a series of bifurcation processes and show rich dynamic phenomena such as buckling, Hopf bifurcation, period-doubling bifurcation, chaotic motion, and divergence motion.