期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Tunnel Support Structure System and Its Synergy
1
作者 Xingxing Wang Wenke Zhao Senyang Wu 《Journal of World Architecture》 2023年第4期11-16,共6页
The tunnel support system is composed of lining,bolt,and steel frame.It is of great significance to effectively control the deformation of the surrounding rock of the tunnel,make full use of the characteristics of dif... The tunnel support system is composed of lining,bolt,and steel frame.It is of great significance to effectively control the deformation of the surrounding rock of the tunnel,make full use of the characteristics of different support methods,and formulate an economical and effective support plan to ensure the safe operation of the tunnel structure.This paper clarifies the synergistic relationship between the support structure and the surrounding rock based on their fundamental characteristics and functions.Various support structures and components are also discussed in this paper.Additionally,the paper presents an optimized design of the tunnel support structure system. 展开更多
关键词 Tunnel engineering support structure system SYNERGY support structure design
下载PDF
A multi-purpose prototype test system for mechanical behavior of tunnel supporting structure: Development and application 被引量:1
2
作者 Hongbin Chen Xinhua You +1 位作者 Dajun Yuan Yang Ping 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期467-476,共10页
A multi-purpose prototype test system is developed to study the mechanical behavior of tunnel sup-porting structure,including a modular counterforce device,a powerful loading equipment,an advanced intelligent manageme... A multi-purpose prototype test system is developed to study the mechanical behavior of tunnel sup-porting structure,including a modular counterforce device,a powerful loading equipment,an advanced intelligent management system and an efficient noncontact deformation measurement system.The functions of the prototype test system are adjustable size and shape of the modular counterforce structure,sufficient load reserve and accurate loading,multi-connection linkage intelligent management,and high-precision and continuously positioned noncontact deformation measurement.The modular counterforce structure is currently the largest in the world,with an outer diameter of 20.5 m,an inner diameter of 16.5 m and a height of 6 m.The case application proves that the prototype test system can reproduce the mechanical behavior of the tunnel lining during load-bearing,deformation and failure processes in detail. 展开更多
关键词 Prototype test system Tunnel supporting structure Tunnel fire LINING Mechanical behavior
下载PDF
Sensor monitoring of a newly designed foundation pit supporting structure 被引量:3
3
作者 杨宇友 吕建国 +1 位作者 黄学刚 涂晓明 《Journal of Central South University》 SCIE EI CAS 2013年第4期1064-1070,共7页
A new type of pit supporting structure, which was tested and verified using the sensor monitoring technology, was presented. The new supporting structure is assembled by prefabricated steel structural units. The adjac... A new type of pit supporting structure, which was tested and verified using the sensor monitoring technology, was presented. The new supporting structure is assembled by prefabricated steel structural units. The adjacent steel structural units are jointed with fasteners, and each steel structural unit has a certain radian and is welded by two steel tubes and one piece of steel disc. In order to test and verify the reliability of the new supporting structure, the field tests are designed. The main monitoring programs include the hoop stress of supporting structure, lateral earth pressure, and soil deformation. The monitoring data of the field tests show that the new supporting structure is convenient, reliable and safe. 展开更多
关键词 foundation pit supporting structure sensor monitoring earth pressure horizontal displacement
下载PDF
Thermal Structure of Glass Fiber Reinforce Plastic Support Structure 被引量:2
4
作者 刘康 汪荣顺 +1 位作者 石玉美 顾安忠 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第3期370-374,共5页
The assembled form of thick-wall glass fiber reinforced plastics (GFRP) tube and 0Cr18Ni9 austenitic stainless steel pipes was designed as the radius thermal-insulating and load-supporting structure in cryogenic vesse... The assembled form of thick-wall glass fiber reinforced plastics (GFRP) tube and 0Cr18Ni9 austenitic stainless steel pipes was designed as the radius thermal-insulating and load-supporting structure in cryogenic vessels. In order to study the thermal leakage and gap changes on the support structure, as well as radius temperature and stress distribution on GFRP tube, an experimental investigation has been taken. The results indicate that the support structure is proved to fit well as thermal-insulating and load-supporting part in cryo-genic vessels, furthermore has high security during cryogenic applications. 展开更多
关键词 glass fiber reinforced plastics (GFRP) tube support structure CRYOGENIC temperature stress
下载PDF
A Lower Rigid Support Structure for the HT-7U Vacuum Vessel 被引量:3
5
作者 宋云涛 姚达毛 +1 位作者 武松涛 翁佩德 《Plasma Science and Technology》 SCIE EI CAS CSCD 2002年第3期1289-1296,共8页
Vacuum vessel of the HT-7U is a fully welded toroidal structure with a noncircular cross-section nested in the bore of the TF coils. According to the requirement of the physics design, sixteen horizontal ports on outb... Vacuum vessel of the HT-7U is a fully welded toroidal structure with a noncircular cross-section nested in the bore of the TF coils. According to the requirement of the physics design, sixteen horizontal ports on outboard mid-plane and thirty-two vertical ports on the top and bottom are designed for diagnostics, plasma heating, current driving, vacuum pumping and gas puffing. Bellows on these port necks are used for flexible components to absorb the relative displacement in radial and vertical directions due to external load, thermal expansion or contrac-tion and assembly tolerance, and also used for isolation of mechanical vibration. For the support system of vacuum vessel it should be not only strong enough to withstand forces acting on the vessel interior components and the vessel itself due to the dead weight and electromagnetic inter-actions during plasma disruption, but also sufficiently flexible to be suited to thermal expansion during baking. In order to solve this contradiction a new kind of low rigid support has been designed, which has a perfectly rigid in vertical direction and perfectly soft in radial direction. Some three-dimension finite element COSMOS models were performed to analyze their structural strength, stiffness and fatigue life, with an emphasis on the static stress analysis. The load spectra during vacuum vessel operation were also simulated on these models in the view of fatigue design. It was confirmed that the bellows and support had sufficient strength in the designed range of the load conditions. The results showed that the peak stress on bellows was 87 MPa and on the support system was 97 MPa. Now all kinds of bellows and support system have been designed. In order to accumulate some engineering experiences and probe into some molding die and welding technologies, prototypical bellows and support system have been fabricated. At the same time a mechanical testing apparatus was designed for proof tests on the prototypical bellows and support to verify their functional and structure capability. The experimental data indicated that the re-sults of finite element analysis were coincident with experimental test results. It has been proved that the present vacuum vessel's bellows and support system are reasonable and feasible. 展开更多
关键词 A Lower Rigid support structure for the HT-7U Vacuum Vessel HT
下载PDF
Application of modified polypropylene (crude) fibers concrete to strengthen the support structures in deep mine roadway 被引量:1
6
作者 BI Yuan-zhi ZHANG Da-lin HU Jin-hua 《Journal of Coal Science & Engineering(China)》 2012年第4期379-384,共6页
The an thors developed a new composite cement base material by mixing the high tenacity polypropylene (coarse) fiber in plain cement base for the cement-layer-spray technology. By studying the key parameters of the ... The an thors developed a new composite cement base material by mixing the high tenacity polypropylene (coarse) fiber in plain cement base for the cement-layer-spray technology. By studying the key parameters of the fiber dosage, the spray layer thickness, and the fiber reinforced concrete injection time, etc. It is found that the ideal volume ratio of polypropylene (crude) fiber is 0.8% (V/V), and the secondary lining fiber concrete spraying should start when the shrinkage rate is lower than 0.5 mm/d, and the optimal thickness of shotcrete is 120 mm. The supporting effects and the economic benefits were studied using a real project practice, and the result obtained can be a good reference for practical applications of this new supporting material in the future. 展开更多
关键词 deep mine roadway modified polypropylene (crude) fiber supporting structure mine stress
下载PDF
Slicing and support structure generation for 3D printing directly on B-rep models 被引量:1
7
作者 Kanle Shi Conghui Cai +1 位作者 Zijian Wu Junhai Yong 《Visual Computing for Industry,Biomedicine,and Art》 2019年第1期16-25,共10页
Traditional 3D printing is based on stereolithography or standard tessellation language models,which contain many redundant data and have low precision.This paper proposes a slicing and support structure generation al... Traditional 3D printing is based on stereolithography or standard tessellation language models,which contain many redundant data and have low precision.This paper proposes a slicing and support structure generation algorithm for 3D printing directly on boundary representation(B-rep)models.First,surface slicing is performed by efficiently computing the intersection curves between the faces of the B-rep models and each slicing plane.Then,the normals of the B-rep models are used to detect where the support structures should be located and the support structures are generated.Experimental results show the efficiency and stability of our algorithm. 展开更多
关键词 3D printing Boundary representation model SLICING support structure generation Intersection curve
下载PDF
Design and Kinematics Analysis of Support Structure for Multi-Configuration Rigid-Flexible Coupled Modular Deployable Antenna 被引量:1
8
作者 TIAN Dake FAN Xiaodong +3 位作者 JIN Lu GUO Zhenwei GAO Haiming CHEN Hanting 《Aerospace China》 2021年第3期46-53,共8页
In order to meet the urgent need for diversified and multi-functional deployable antennas in many major national aerospace projects,such as interstellar exploration,the fourth phase of lunar exploration project,and th... In order to meet the urgent need for diversified and multi-functional deployable antennas in many major national aerospace projects,such as interstellar exploration,the fourth phase of lunar exploration project,and the industrial application of Bei Dou,a deployable antenna structure composed of hexagonal prism and pentagonal prism modules is proposed.Firstly,the arrangement and combination rules of pentagonal prism and hexagonal prism modules on the plane were analyzed.Secondly,the spatial geometric model of the deployable antenna composed of pentagonal prism and hexagonal prism modules was established.The influence of module size on the antenna shape was then analyzed,and the kinematic model of the deployable antenna established by coordinate transformation.Finally,the above model was verified using MATLAB software.The simulation results showed that the proposed modular deployable antenna structure can realize accurate connection between modules,complete the expected deployment and folding functional requirements.It is hoped that this research can provide reference for the basic research and engineering application of deployable antennas in China. 展开更多
关键词 space deployable antenna support structure rigid flexible coupling kinematics analysis numerical simulation
下载PDF
Investigation on the Fatigue Characteristic in Support Structure of HL-2M Tokamak
9
作者 曹诚志 刘德权 +1 位作者 林涛 乔涛 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第2期172-176,共5页
In order to obtain enhanced plasma parameters a complete new tokamak HL-2M is now under construction in Southwestern Institute of Physics. To assure the structural safety of the device for the entire operation cycle, ... In order to obtain enhanced plasma parameters a complete new tokamak HL-2M is now under construction in Southwestern Institute of Physics. To assure the structural safety of the device for the entire operation cycle, one of the most important issues is the lifetime-limiting effects due to the pulsed operation mode. Fatigue is one of the major failure modes to be considered in mechanical design, and pulsed operation imposes stress with significant alternating components on the support structure (SS). Therefore, the reliability of the whole device is strongly affected by the stress and fatigue characteristic of the SS as the interface structure. This article introduces the SS design and details the fatigue life calculation methods based on the different characteristics of the sub-structures. The fatigue life in hazardous areas of the toroidal field coils anti-torque structure (TFCs-ATs) has been determined by non-linear analysis results. And with the stress- time history data of the vacuum vessel & poloidal field coils support structure (VV&PFCs SS), the fatigue analysis of the hot spots has been completed based on rain-flow counting method and linear cumulative damage method. The calculated minimum fatigue life on TFCs-ATs and VVSzPFCs SS is 4.743E+05 and 1.805E+06 cycles, respectively. And the calculated fatigue life on sub-structures can meet the required life for HL-2M tokamak: 1.0E+05 cycles. 展开更多
关键词 HL-2M tokamak support structure stress analysis fatigue analysis
下载PDF
Information Monitoring Technology for Support Structure of Railway Tunnel During Operation
10
作者 Licai Zhao Shishuen Chen 《Structural Durability & Health Monitoring》 EI 2018年第1期35-50,共16页
In the process of railway construction, because of the inconvenience ofgeological condition, water bursting and mud surging happen frequently, and the laterdeformation of support structure on the happening geology sec... In the process of railway construction, because of the inconvenience ofgeological condition, water bursting and mud surging happen frequently, and the laterdeformation of support structure on the happening geology section would threaten thenormal running of railway. The limit difference of deformation control value of thesupport structure section where geological accidents frequently happen, is small, andartificial half-automatic supervisory technology cannot get the health condition of tunnelin time, resulting many cars speed-down accidents due to deformation of supportstructure. Through design innovation, we introduce TGMIS in the later period ofYanzishan railway construction to quickly capture the deformation of support structure,the strain of lining concrete, the strain of steel frame, stress of surrounding soil, stress ofsurrounding water, strain of second lining steel bar and other situ data. Also we setobservation prism and measuring robot device in specific position inside tunnel, androbot laser locator laser spot is projected onto reflection target surface, by graphicprocessing algorithm, the receiver calculates the measured value and standard value ofthe 3D coordinates of the laser spot. Then the information is transmitted throughtransmitting device, transducer and USB-485 to computer to predict and evaluate thehealth condition of the support structure of the tunnel so as to provide safety warninginformation. Provide timely and reliable data for the operation company to avoid theoccurrence of vicious accidents. 展开更多
关键词 Operation tunnel support structure HEALTH data automation MONITORING evaluation
下载PDF
Application of Modified Genetic Algorithm to Optimal Design of Supporting Structure
11
作者 周瑞忠 潘是伟 《Journal of China University of Mining and Technology》 2003年第2期131-135,共5页
The modified genetic algorithm was used for the optimal design of supporting structure in deep pits.Based on the common genetic algorithm, using niche technique and reserving the optimum individual the modified geneti... The modified genetic algorithm was used for the optimal design of supporting structure in deep pits.Based on the common genetic algorithm, using niche technique and reserving the optimum individual the modified genetic algorithm was presented. By means of the practical engineering, the modified genetic algorithm not only has more expedient convergence, but also can enhance security and operation efficiency. 展开更多
关键词 genetic algorithm deep excavations supporting structure optimal design niche technique
下载PDF
Multi-criteria assessment of offshore wind turbine support structures based on dynamic property optimization
12
作者 孟珣 Shi Ruifeng 《High Technology Letters》 EI CAS 2014年第4期421-428,共8页
Increasing size of wind turbine and deep water deployment have raised the issue of appropriate selection of the most suitable support structure to make offshore wind energy cost competitive.The paper presents an optim... Increasing size of wind turbine and deep water deployment have raised the issue of appropriate selection of the most suitable support structure to make offshore wind energy cost competitive.The paper presents an optimization methodology for decision making process of bottom mounted supports of offshore wind turbines (OWTs) through reasonable engineering attributes derivation.Mathematic models of support structures are reduced by the generalized single-degree-of-freedom theory with relatively fewer structural parameters.Soft-stiff design optimization based on dynamic properties of OWTs is performed for monopile and lattice supports with different wind turbines,water depth and hub height.Attributes of support structures,wind turbines and environment conditions are applied in the multi-criteria decision making method——TOPSIS for benchmarking of those options.The results illustrate the effectiveness of the proposed optimazation methodology combined with economical and environmental attributes together. 展开更多
关键词 offshore wind turbines (OWTs) support structure finite element method generalized single-degree-of-freedom (GSDOF) system dynamic property technique for order preference by similarity to ideal solution (TOPSIS) method
下载PDF
REQUIREMENTS AND DESIGN METHOD FOR MATCHING AIRCRAFT GUNS WITH THEIR SUPPORTING STRUCTURE
13
《Chinese Journal of Aeronautics》 SCIE EI CAS 1988年第2期105-109,共5页
In aircraft structural dynamic design the matching of guns with their supporting structure is one of the most important tasks on which hinges the success or failure of the structural design. The design curves for matc... In aircraft structural dynamic design the matching of guns with their supporting structure is one of the most important tasks on which hinges the success or failure of the structural design. The design curves for matching guns with their supporting structure can be obtained from response calculations of the plate-spring system supporting the gun on the ground,the model structure tested on the ground and the actual structure.A set of matching curves is given for engineering application.Then,the matching design can be accomplished by means of impact load spectrograms so as to perform an optimal structural design and to make further improvements on dynamic design program. 展开更多
关键词 REQUIREMENTS AND DESIGN METHOD FOR MATCHING AIRCRAFT GUNS WITH THEIR supportING structure
下载PDF
Research on Temperature Field of the Support Structure for the Independent LNG Tank
14
作者 Shifeng Ding Li Zhou +2 位作者 Yajun Zhou Yingjie Gu Vladimir GTsuprik 《Hydro Science & Marine Engineering》 2020年第1期33-39,共7页
The independent LNG(Liquified Nature Gas)containment is widely used for small or medium-sized LNG carrier and ship using LNG as fuels.The common tank pattern includes single-spherical-cylindrical tank and double-spher... The independent LNG(Liquified Nature Gas)containment is widely used for small or medium-sized LNG carrier and ship using LNG as fuels.The common tank pattern includes single-spherical-cylindrical tank and double-spherical-cylindrical tank,which is the key to design the hull structure and its support.The support is designed to connect the hull structure and LNG tank.Its main functions are heat transferring and force loading.This paper focus on the temperature field distribution of hull and its support structure.The thermal boundary conditions are simulated according to the heat transfer action,such as thermal convection,heat conduction and thermal radiation.The method on how to carry out thermal analysis is presented for an independent LNG containment.The case study is carried out with two typical independent LNG tanks.One is a tank with double spherical cylindrical in the LNG carrier,and the other is a tank with single spherical cylindrical on the deck of the ship using LNG as fuels.The result shows the method presented in this paper is a good reference for the structural design with independent LNG containment. 展开更多
关键词 Temperature filed Heat transfer analysis Thermal convection support structure Independent LNG carrier
下载PDF
Dynamic evolution in mechanical characteristics of complex supporting structures during large section tunnel construction
15
作者 Hua Jiang Jianhua Mu +3 位作者 Jinxun Zhang Yusheng Jiang Chongyang Liu Xiaoyan Zhang 《Deep Underground Science and Engineering》 2022年第2期183-201,共19页
The shallow tunnelling method(STM)often uses temporary supports to divide large section tunnels into several closed or semiclosed sections so as to share the upper load.The complex support system composed of primary a... The shallow tunnelling method(STM)often uses temporary supports to divide large section tunnels into several closed or semiclosed sections so as to share the upper load.The complex support system composed of primary and temporary supports can ensure safety during tunnel construction.Based on the large section tunnel of Beijing Subway Line 12,the mechanical characteristics of support system by the double-side-drift method(DSDM)during excavation and demolition were analyzed through numerical simulation and monitoring.The study showed that the middle cave excavation was the most critical stage of the DSDM,during which the load on the supporting structure increased significantly.The temporary vertical support bore most of the new load during middle cave excavation.During the demolition stage,the load was redistributed,which caused arch settlement and section convergence.The removal of the temporary vertical support exerted the greatest impact in this process.The lateral temporary inverted arch changed from axial compression to axial tension after the middle and lower caves were excavated.Based on the mechanical characteristics of the support system,some engineering suggestions were proposed for large section tunnel construction.These research results can provide reference for the design and construction of similar large section tunnels. 展开更多
关键词 large section tunnel mechanical characteristics on-site monitoring supporting structure the shallow tunnelling method
下载PDF
A Practical Decision Making on Design of Fixed Offshore Wind Turbine Support Structure Considering Socio-economic Impact
16
作者 M Vishnu Surendran Sankunny 《Sustainable Marine Structures》 2019年第1期41-46,共6页
Wind energy is considered one of the most promising alternative energy sources against the conventional fossil fuels.However,the deployment of these structures in deep-water for better power production is considered a... Wind energy is considered one of the most promising alternative energy sources against the conventional fossil fuels.However,the deployment of these structures in deep-water for better power production is considered as a complex task.This also has raised the issue regarding selection of appropriate support structures for various sea conditions by considering environmental impact and carbon footprint.This paper considers a jacket like support structure as a case study for an intermediate water depth(50m).The jacket is considered to be located in North of Dutch Sea,and 100-extreme wave is applied as load condition.Here,the presented methodology provides an insight towards environmental/social impact made by the optimized designs in comparison with reference design. 展开更多
关键词 Wind turbine support structure Sustainable design Optimization Multi criteria decision making Non-linear based design
下载PDF
Stability influence factors analysis and construction of a deep beam anchorage structure in roadway roof 被引量:8
17
作者 Xie Shengrong Gao Mingming +4 位作者 Chen Dongdong Sun Yanding Pan Hao Su Hai Lan Shizhong 《International Journal of Mining Science and Technology》 EI CSCD 2018年第3期445-451,共7页
Deep beam anchorage structures based on spatial distribution analysis of the cable prestressed field have been proposed for roadway roof support, Stability and other factors that influence deep beam structures are stu... Deep beam anchorage structures based on spatial distribution analysis of the cable prestressed field have been proposed for roadway roof support, Stability and other factors that influence deep beam structures are studied in this paper using mechanical calculations, numerical analysis and field measurements, A mechanical model of deep beam structure subjected to multiple loading is established, including analysis of roof support in the return airway of S1203 working face in the Yuwu coal mine, China, The expression of maximum shear stress in the deep beam structure is deduced according to the stress superposition criterion, It is found that the primary factors affecting deep beam structure stability are deep beam thickness, cable pre-tension and cable spacing, The variation of maximum shear stress distribution and prestressed field diffusion effects according to various factors are analyzed using Matlah and FLAC3DTM software, and practical support parameters of the S1203 return airway roof are determined, According to the observations of rock pressure, there is no evidence of roof separation, and the maximum values of roof subsidence and convergence of wall rock are 72 and 48 mm, respectively, The results show that the proposed roof support design with a deep beam structure is feasible and achieves effective control of the roadway roof, 展开更多
关键词 support structure Deep beam Maximum shear stress Influencing factors Stability control Roadway roof
下载PDF
Torsional effect of space structure in frequent earthquakes
18
作者 王秀丽 金恩平 《Journal of Chongqing University》 CAS 2011年第2期84-92,共9页
Taking a concrete frame supporting space structure as the research object,we systematically studied its lateral-torsion coupling effect of reverse problems in consistent earthquake excitation.Firstly,based on its reve... Taking a concrete frame supporting space structure as the research object,we systematically studied its lateral-torsion coupling effect of reverse problems in consistent earthquake excitation.Firstly,based on its reverse forms and features,we put forward a mechanical analysis model(flexibility layer model) and a calculation method using the response spectrum method and the weighted average method,and verified their validity and feasibility using case analysis.The result shows that the translation displacement change trend of the space structure is basically the same whether reverse exists in the supporting structure or not,but the supporting structure torsion has an effect on the displacement with a relative increase of 10%. 展开更多
关键词 frequent earthquake space structure supporting structure torsional effect flexibility layer model ECCENTRICITY
下载PDF
Synthesis, Characterization, and Properties of Supported Tungstozincate Bridged by Co(Ⅱ) Complex Fragment
19
作者 LIU Kun LI Jia +1 位作者 LIU Hong-bo CHEN Ya-guang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第6期668-671,共4页
[Co^11(phen)3]2[{(ZnW12O40)Co^11(phen)2(H2O)}2Co^11(trien)2(NaH2O)2]·3H2O was synthesized via hydrothermal technique and characterized with elemental analyses, IR spectroscopy, TGA-DTA, and variable t... [Co^11(phen)3]2[{(ZnW12O40)Co^11(phen)2(H2O)}2Co^11(trien)2(NaH2O)2]·3H2O was synthesized via hydrothermal technique and characterized with elemental analyses, IR spectroscopy, TGA-DTA, and variable temperature magnetic susceptibility. The compound crystallized in the monoclinic system with the space group P21/n, a=1.8210 nm, b=2.3592 nm, c=2.2932 nm, β=110.31°, V=9.239 nm^3, Z=2, R1=0.0827. The compound consists of two coordination cations, three lattice water molecules, and a macroanion [{(ZnW12O40)Co(phen)2(H2O)}2Co(C6H18N4)2·(NaH2O)2]^4- in which each supported Keggin anion [(ZnW12O40Co^11(phen)2(H2O)]^4- acts as a ligand to coordinate to central bridging Co^2+ ion via a terminal oxygen atom. Hydrogen bonds are responsible for the construction of 3D architecture of the compound. The compound is paramagnetic with a weak antiferromagnetic interaction(0=-46.796 K). 展开更多
关键词 Hydrothermal synthesis Organic-inorganic hybrid supported Keggin structure Cobalt complex Tungstozincate
下载PDF
Neuron-fibrous scaffold interfaces in the peripheral nervous system: a perspective on the structural requirements
20
作者 Sanaz Behtaj James A.St John +1 位作者 Jenny A.K.Ekberg Maksym Rybachuk 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第9期1893-1897,共5页
The nerves of the peripheral nervous system are not able to effectively regenerate in cases of severe neural injury.This can result in debilitating consequences,including morbidity and lifelong impairments affecting t... The nerves of the peripheral nervous system are not able to effectively regenerate in cases of severe neural injury.This can result in debilitating consequences,including morbidity and lifelong impairments affecting the quality of the patient’s life.Recent findings in neural tissue engineering have opened promising avenues to apply fibrous tissue-engineered scaffolds to promote tissue regeneration and functional recovery.These scaffolds,known as neural scaffolds,are able to improve neural regeneration by playing two major roles,namely,by being a carrier for transplanted peripheral nervous system cells or biological cues and by providing structural support to direct growing nerve fibers towards the target area.However,successful implementation of scaffold-based therapeutic approaches calls for an appropriate design of the neural scaffold structure that is capable of up-and down-regulation of neuron-scaffold interactions in the extracellular matrix environment.This review discusses the main challenges that need to be addressed to develop and apply fibrous tissue-engineered scaffolds in clinical practice.It describes some promising solutions that,so far,have shown to promote neural cell adhesion and growth and a potential to repair peripheral nervous system injuries. 展开更多
关键词 electrospun scaffold extracellular matrix nerve conduit neural tissue engineering physical lumen filler scaffold topography structural support surface interaction
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部