期刊文献+
共找到604篇文章
< 1 2 31 >
每页显示 20 50 100
Face Recognition Based on Support Vector Machine and Nearest Neighbor Classifier 被引量:8
1
作者 Zhang Yankun & Liu Chongqing Institute of Image Processing and Pattern Recognition, Shanghai Jiao long University, Shanghai 200030 P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期73-76,共4页
Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with ... Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with the nearest neighbor classifier (NNC) is proposed. The principal component analysis (PCA) is used to reduce the dimension and extract features. Then one-against-all stratedy is used to train the SVM classifiers. At the testing stage, we propose an al- 展开更多
关键词 Face recognition support vector machine Nearest neighbor classifier Principal component analysis.
下载PDF
Support vector classifier based on principal component analysis 被引量:1
2
作者 Zheng Chunhong Jiao Licheng Li Yongzhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期184-190,共7页
Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dim... Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dimensions of the original samples and the main features of the samples may be picked up first to improve the performance of SVC. A principal component analysis (PCA) is employed to reduce the feature dimensions of the original samples and the pre-selected main features efficiently, and an SVC is constructed in the selected feature space to improve the learning speed and identification rate of SVC. Furthermore, a heuristic genetic algorithm-based automatic model selection is proposed to determine the hyperparameters of SVC to evaluate the performance of the learning machines. Experiments performed on the Heart and Adult benchmark data sets demonstrate that the proposed PCA-based SVC not only reduces the test time drastically, but also improves the identify rates effectively. 展开更多
关键词 support vector classifier principal component analysis feature selection genetic algorithms
下载PDF
Fault depth estimation using support vector classifier and features selection
3
作者 Mohammad Ehsan Hekmatian Vahid E. Ardestani +2 位作者 Mohammad Ali Riahi Ayyub Memar Koucheh Bagh Jalal Amini 《Applied Geophysics》 SCIE CSCD 2013年第1期88-96,119,共10页
Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, de... Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, detecting the depth of subsurface faults with related error is possible but it is necessary to have an initial guess for the depth and this initial guess usually comes from non-gravity data. We introduce SVC in this paper as one of the tools for estimating the depth of subsurface faults using gravity data. We can suppose that each subsurface fault depth is a class and that SVC is a classification algorithm. To better use the SVC algorithm, we select proper depth estimation features using a proper features selection (FS) algorithm. In this research, we produce a training set consisting of synthetic gravity profiles created by subsurface faults at different depths to train the SVC code to estimate the depth of real subsurface faults. Then we test our trained SVC code by a testing set consisting of other synthetic gravity profiles created by subsurface faults at different depths. We also tested our trained SVC code using real data. 展开更多
关键词 depth estimation subsurface fault support vector classifier FEATURE featuresselection
下载PDF
Data Perturbation Analysis of the Support Vector Classifier Dual Model
4
作者 Chun Cai Xikui Wang 《Journal of Software Engineering and Applications》 2018年第10期459-466,共8页
The paper establishes a theorem of data perturbation analysis for the support vector classifier dual problem, from which the data perturbation analysis of the corresponding primary problem may be performed through sta... The paper establishes a theorem of data perturbation analysis for the support vector classifier dual problem, from which the data perturbation analysis of the corresponding primary problem may be performed through standard results. This theorem derives the partial derivatives of the optimal solution and its corresponding optimal decision function with respect to data parameters, and provides the basis of quantitative analysis of the influence of data errors on the optimal solution and its corresponding optimal decision function. The theorem provides the foundation for analyzing the stability and sensitivity of the support vector classifier. 展开更多
关键词 support vector classifier PARTIAL DERIVATIVE Sensitivity STABILITY
下载PDF
Construction and application of pre-classified smooth semi-supervised twin support vector machine
5
作者 ZHANG Xiaodan QI Hongye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期564-572,共9页
In order to handle the semi-supervised problem quickly and efficiently in the twin support vector machine (TWSVM) field, a semi-supervised twin support vector machine (S2TSVM) is proposed by adding the original unlabe... In order to handle the semi-supervised problem quickly and efficiently in the twin support vector machine (TWSVM) field, a semi-supervised twin support vector machine (S2TSVM) is proposed by adding the original unlabeled samples. In S2TSVM, the addition of unlabeled samples can easily cause the classification hyper plane to deviate from the sample points. Then a centerdistance principle is proposed to pre-classify unlabeled samples, and a pre-classified S2TSVM (PS2TSVM) is proposed. Compared with S2TSVM, PS2TSVM not only improves the problem of the samples deviating from the classification hyper plane, but also improves the training speed. Then PS2TSVM is smoothed. After smoothing the model, the pre-classified smooth S2TSVM (PS3TSVM) is obtained, and its convergence is deduced. Finally, nine datasets are selected in the UCI machine learning database for comparison with other types of semi-supervised models. The experimental results show that the proposed PS3TSVM model has better classification results. 展开更多
关键词 SEMI-SUPERVISED TWIN support vector machine (TWSVM) pre-classified center-distance SMOOTH
下载PDF
基于ERF和BO-SVC的交流接触器触头故障识别方法
6
作者 刘树鑫 祁新智 吕先锋 《电力工程技术》 北大核心 2024年第6期173-182,共10页
针对交流接触器各状态样本不均衡导致故障状态识别精度低和特征冗余度高的问题,文中提出一种基于嵌入式随机森林(embedded random forest,ERF)和贝叶斯优化非线性支持向量机(Bayesian optimization-support vector classification,BO-S... 针对交流接触器各状态样本不均衡导致故障状态识别精度低和特征冗余度高的问题,文中提出一种基于嵌入式随机森林(embedded random forest,ERF)和贝叶斯优化非线性支持向量机(Bayesian optimization-support vector classification,BO-SVC)的复合识别方法。首先,通过交流接触器全寿命试验平台提取接触器状态特征,并针对各状态样本间不均衡导致识别精度低现象,提出一种基于权重法的样本均衡处理策略。然后,使用ERF对均衡后样本进行特征选择和降维,提取最能表征触头状态变化规律的最优特征。最后,将最优特征输入到BO-SVC识别模型,与另外2种代表性模型作为对比,以精确率、召回率和F1-分数3个指标对各模型性能进行评估。在3个指标上,文中方法的结果分别达到95.22%、98.91%和97.01%,均高于对比模型。以F1-分数为指标,在4组样本上对各模型性能进行测试,结果表明文中方法的F1-分数平均高出对比模型0.56%和27.28%,验证文中研究有效解决了交流接触器特征冗余和故障识别精度低的问题。 展开更多
关键词 交流接触器 故障识别 样本不均衡 特征选择 嵌入式随机森林(ERF) 贝叶斯优化非线性支持向量机(BO-svc)
下载PDF
A Multiple Model Approach to Modeling Based on Fuzzy Support Vector Machines 被引量:2
7
作者 冯瑞 张艳珠 +1 位作者 宋春林 邵惠鹤 《Journal of Shanghai Jiaotong university(Science)》 EI 2003年第2期137-141,共5页
A new multiple models(MM) approach was proposed to model complex industrial process by using Fuzzy Support Vector Machines(F -SVMs). By applying the proposed approach to a pH neutralization titration experiment, F -SV... A new multiple models(MM) approach was proposed to model complex industrial process by using Fuzzy Support Vector Machines(F -SVMs). By applying the proposed approach to a pH neutralization titration experiment, F -SVMs MM not only provides satisfactory approximation and generalization property, but also achieves superior performance to USOCPN multiple modeling method and single modeling method based on standard SVMs. 展开更多
关键词 fuzzy support vector machines(FSVMs) fuzzy support vector classifier(Fsvc) fuzzy support vector regression(FSVR) multiple model MODELING
下载PDF
Construction of Influenza Early Warning Model Based on Combinatorial Judgment Classifier:A Case Study of Seasonal Influenza in Hong Kong 被引量:2
8
作者 Zi-xiao WANG James NTAMBARA +3 位作者 Yan LU Wei DAI Rui-jun MENG Dan-min QIAN 《Current Medical Science》 SCIE CAS 2022年第1期226-236,共11页
Objective:The annual influenza epidemic is a heavy burden on the health care system,and has increasingly become a major public health problem in some areas,such as Hong Kong(China).Therefore,based on a variety of mach... Objective:The annual influenza epidemic is a heavy burden on the health care system,and has increasingly become a major public health problem in some areas,such as Hong Kong(China).Therefore,based on a variety of machine learning methods,and considering the seasonal influenza in Hong Kong,the study aims to establish a Combinatorial Judgment Classifier(CJC)model to classify the epidemic trend and improve the accuracy of influenza epidemic early warning. 展开更多
关键词 influenza prediction DATA-DRIVEN support vector Machine Discriminant Analysis Ensemble classifier
下载PDF
Gear Fault Diagnosis Based on Rough Set and Support Vector Machine 被引量:3
9
作者 TIAN Huifang SUN Shanxia School of Mechanical and Electrical Engineering,Wuhan University of Technology,Wuhan 430070,China, 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S3期1046-1051,共6页
By introducing Rough Set Theory and the principle of Support vector machine,a gear fault diagnosis method based on them is proposed.Firstly,diagnostic decision-making is reduced based on rough set theory,and the noise... By introducing Rough Set Theory and the principle of Support vector machine,a gear fault diagnosis method based on them is proposed.Firstly,diagnostic decision-making is reduced based on rough set theory,and the noise and redundancy in the sample are removed,then,according to the chosen reduction,a support vector machine multi-classifier is designed for gear fault diagnosis.Therefore,SVM’training data can be reduced and running speed can quicken.Test shows its accuracy and effi- ciency of gear fault diagnosis. 展开更多
关键词 ROUGH SET support vector machine FAULT diagnosis multi-classifier
下载PDF
An Algorithm for Idle-State Detection and Continuous Classifier Design in Motor-Imagery-Based BCI 被引量:3
10
作者 Yu Huang Qiang Wu Xu Lei Ping Yang Peng Xu De-Zhong Yao 《Journal of Electronic Science and Technology of China》 2009年第1期27-33,共7页
Abstract-The development of asynchronous brain-computer interface (BCI) based on motor imagery (M1) poses the research in algorithms for detecting the nontask states (i.e., idle state) and the design of continuo... Abstract-The development of asynchronous brain-computer interface (BCI) based on motor imagery (M1) poses the research in algorithms for detecting the nontask states (i.e., idle state) and the design of continuous classifiers that classify continuously incoming electroencephalogram (EEG) samples. An algorithm is proposed in this paper which integrates two two-class classifiers to detect idle state and utilizes a sliding window to achieve continuous outputs. The common spatial pattern (CSP) algorithm is used to extract features of EEG signals and the linear support vector machine (SVM) is utilized to serve as classifier. The algorithm is applied on dataset IVb of BCI competition Ⅲ, with a resulting mean square error of 0.66. The result indicates that the proposed algorithm is feasible in the first step of the development of asynchronous systems. 展开更多
关键词 Brain-computer interface competition common spatial pattern continuous classifier idle state motor imagery support vector machine.
下载PDF
Assessment of Supervised Classifiers for Land Cover Categorization Based on Integration of ALOS PALSAR and Landsat Data
11
作者 Dorothea Deus 《Advances in Remote Sensing》 2018年第2期47-60,共14页
Many supervised classification algorithms have been proposed, however, they are rarely evaluated for specific application. This research examines the performance of machine learning classifiers support vector machine ... Many supervised classification algorithms have been proposed, however, they are rarely evaluated for specific application. This research examines the performance of machine learning classifiers support vector machine (SVM), neural network (NN), Random Forest (RF) against maximum classifier (MLC) (traditional supervised classifier) in forest resources and land cover categorization, based on combination of Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) and Landsat Thematic Mapper (TM) data, in Northern Tanzania. Various data categories based on Landsat TM surface reflectance, ALOS PALSAR backscattering and their derivatives were generated for various classification scenarios. Then a separate and joint processing of Landsat and ALOS PALSAR data were executed using SVM, NN, RF and ML classifiers. The overall classification accuracy (OA), kappa coefficient (KC) and F1 score index values were computed. The result proves the robustness of SVM and RF in classification of forest resource and land cover using mere Landsat data and integration of Landsat and PALSAR (average OA = 92% and F1 = 0.7 to 1). A two sample t-statistics was utilized to evaluate the performance of the classifiers using different data categories. SVM and RF indicate there is no significance difference at 5% significance level. SVM and RF show a significant difference when compared to NN and ML. Generally, the study suggests that parametric classifiers indicate better performance compared to parametric classifier. 展开更多
关键词 Supervised classifier LANDSAT ALOS PALSAR support vector Machine Maximum LIKELIHOOD Neural Network Random Forest Land Cover classification
下载PDF
BFS-SVM Classifier for QoS and Resource Allocation in Cloud Environment
12
作者 A.Richard William J.Senthilkumar +1 位作者 Y.Suresh V.Mohanraj 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期777-790,共14页
In cloud computing Resource allocation is a very complex task.Handling the customer demand makes the challenges of on-demand resource allocation.Many challenges are faced by conventional methods for resource allocatio... In cloud computing Resource allocation is a very complex task.Handling the customer demand makes the challenges of on-demand resource allocation.Many challenges are faced by conventional methods for resource allocation in order tomeet the Quality of Service(QoS)requirements of users.For solving the about said problems a new method was implemented with the utility of machine learning framework of resource allocation by utilizing the cloud computing technique was taken in to an account in this research work.The accuracy in the machine learning algorithm can be improved by introducing Bat Algorithm with feature selection(BFS)in the proposed work,this further reduces the inappropriate features from the data.The similarities that were hidden can be demoralized by the Support Vector Machine(SVM)classifier which is also determine the subspace vector and then a new feature vector can be predicted by using SVM.For an unexpected circumstance SVM model can make a resource allocation decision.The efficiency of proposed SVM classifier of resource allocation can be highlighted by using a singlecell multiuser massive Multiple-Input Multiple Output(MIMO)system,with beam allocation problem as an example.The proposed resource allocation based on SVM performs efficiently than the existing conventional methods;this has been proven by analysing its results. 展开更多
关键词 Bat algorithm with feature selection(BFS) support vector machine(SVM) multiple-input multiple output(MIMO) quality of service(QoS) classifier cloud computing
下载PDF
基于K-均值的SVC的雷达辐射源信号识别 被引量:4
13
作者 李序 张葛祥 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第23期6333-6337,共5页
无监督学习是解决未知雷达辐射源信号识别的有效方法。Support Vector Clustering(SVC)是一种基于支持向量机的无监督聚类方法。SVC不仅时间复杂度高,而且在处理分布复杂、不均匀样本时,识别率较低。结合K-均值与SVC的优点,提出一种基... 无监督学习是解决未知雷达辐射源信号识别的有效方法。Support Vector Clustering(SVC)是一种基于支持向量机的无监督聚类方法。SVC不仅时间复杂度高,而且在处理分布复杂、不均匀样本时,识别率较低。结合K-均值与SVC的优点,提出一种基于K-均值的SVC无监督聚类方法。此方法用K-均值聚类法对数据样本作初步的线性划分,将原数据样本划分成若干子样本。再将这些子样本分别映射到高维特征空间,用SVC方法去处理非线性问题。由K-均值聚类法将二次规划问题分解,大大减少SVC的计算量,降低时间消耗。相对于原数据样本,子样本的分布较为简单、均匀,容易找到更为合适的SVC参数值。对雷达辐射源信号进行聚类分析的实验结果表明,此方法处理速度较快,识别率较高。 展开更多
关键词 K-均值聚类 support vector Clustering(svc)无监督聚类 雷达辐射源
下载PDF
基于KPCA-SVC的复杂过程故障诊断 被引量:16
14
作者 刘爱伦 袁小艳 俞金寿 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第5期870-874,共5页
本文提出了一种将核主元分析方法与支持向量机分类相结合进行故障诊断的方法,运用该方法对连续搅拌釜式反应器(CSTR)进行实时的故障诊断,实验结果表明KPCA-SVC故障诊断方法既充分利用了KPCA的特征提取能力和SVC的良好的分类能力,又避免... 本文提出了一种将核主元分析方法与支持向量机分类相结合进行故障诊断的方法,运用该方法对连续搅拌釜式反应器(CSTR)进行实时的故障诊断,实验结果表明KPCA-SVC故障诊断方法既充分利用了KPCA的特征提取能力和SVC的良好的分类能力,又避免了复杂的计算,有利于提高故障诊断模型的实时性。 展开更多
关键词 核主元分析(KPcA) 支持向量机分类(svc) 故障诊断
下载PDF
ν-SVC分类算法在飞机作战效能评估中的应用 被引量:3
15
作者 郭风 王思源 伦洪昌 《电光与控制》 北大核心 2007年第2期38-40,54,共4页
ν-SVC算法是一种新的支持向量机分类算法,该算法根据给定的参数ν自动调整ε,来控制支持向量数目和算法误差。本文应用ν-SVC算法建立了飞机作战效能分类评估模型,并对几种飞机的作战效能进行了分类评估。评估结果与实际相符,表明ν-SV... ν-SVC算法是一种新的支持向量机分类算法,该算法根据给定的参数ν自动调整ε,来控制支持向量数目和算法误差。本文应用ν-SVC算法建立了飞机作战效能分类评估模型,并对几种飞机的作战效能进行了分类评估。评估结果与实际相符,表明ν-SVC算法的飞机作战效能分类评估有较高的分类精度。 展开更多
关键词 v—svc 支持向量机 作战效能 评估
下载PDF
基于SVC-ENN钢铁企业副产煤气消耗量的预测建模 被引量:2
16
作者 李红娟 王建军 +1 位作者 王华 孟华 《昆明理工大学学报(自然科学版)》 CAS 北大核心 2013年第5期68-74,共7页
针对钢铁企业副产煤气消耗量的机理模型难以对消耗量进行精确预测的问题,通过分析副产煤气消耗量特点,建立SVC-ENN模型对副产煤气的消耗量进行预测.根据企业实际数据应用模型,结果表明,对烧结工序、炼钢工序、连铸工序30个点和60个点进... 针对钢铁企业副产煤气消耗量的机理模型难以对消耗量进行精确预测的问题,通过分析副产煤气消耗量特点,建立SVC-ENN模型对副产煤气的消耗量进行预测.根据企业实际数据应用模型,结果表明,对烧结工序、炼钢工序、连铸工序30个点和60个点进行测试分类准确率分别为90%,96.67%,98.33%;96.67%,95%,100%.根据分类结果建立模型进行预测,预测平均相对误差分别为0.8%,0.5%,0.9%;2.1%,0.8%,1.3%.所建模型分类准确,预测效果良好,适合副产煤气消耗量的预测. 展开更多
关键词 ELMAN神经网络 支持向量分类 最小二乘支持向量机
下载PDF
基于SVC和wavelet-transform的图像脉冲噪声自适应新滤波器 被引量:2
17
作者 陆丽婷 朱嘉钢 《计算机应用》 CSCD 北大核心 2009年第2期477-479,共3页
利用小波变换可以检测信号奇异点的原理,提出了一种基于WT的脉冲噪声检测方法,并把这一方法与支持向量分类器SVC脉冲噪声检测方法相结合,提出了一种改进的SVC图像脉冲噪声滤波器。实验表明,这一改进的SVC脉冲噪声滤波器的滤波效果比原先... 利用小波变换可以检测信号奇异点的原理,提出了一种基于WT的脉冲噪声检测方法,并把这一方法与支持向量分类器SVC脉冲噪声检测方法相结合,提出了一种改进的SVC图像脉冲噪声滤波器。实验表明,这一改进的SVC脉冲噪声滤波器的滤波效果比原先的SVC滤波器有明显的改善。 展开更多
关键词 图像恢复 脉冲噪声 小波变换 支持向量分类
下载PDF
基于手势多特征融合及优化Multiclass-SVC的手势识别 被引量:13
18
作者 程淑红 程彦龙 杨镇豪 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第6期225-232,共8页
深度相机的发展使得获取手势骨骼信息更加方便,为了从多维手势骨骼节点大数据中获取有用信息并在室内复杂环境和近距离条件下实现对常见双手静态交互动作的识别,提出一种基于多特征融合及生物启发式遗传算法优化多分类支持向量分类器(mu... 深度相机的发展使得获取手势骨骼信息更加方便,为了从多维手势骨骼节点大数据中获取有用信息并在室内复杂环境和近距离条件下实现对常见双手静态交互动作的识别,提出一种基于多特征融合及生物启发式遗传算法优化多分类支持向量分类器(multiclass-SVC)的静态手势识别方法。利用手势骨骼数据设计了新的手势特征且通过特征组合策略建立更全面的手势特征序列,削弱了冗余特征产生的影响,提高了数据处理能力;采用生物启发式遗传算法优化multiclass-SVC的核函数与惩罚参数,得到最优核函数和惩罚参数,能够克服因随机选择核函数和惩罚参数导致手势识别准确度低的缺点;运用P、R、F1、A度量指标对手势识别模型进行综合评估,且通过与KNN、MLP、MLR、XGboost等模型的对比实验,验证了所提手势识别模型能有效提高手势识别准确度;通过迭代增加手势样本数据进行模型训练的方法分析了样本容量对手势识别准确度的影响,提供了一种提高手势识别准确度的有效方法。实验结果表明,手势识别准确率达到98.4%,识别算法的查准率、查全率和F1性能评测指标均值不低于0.98。 展开更多
关键词 体感控制器 手势特征序列 多分类支持向量分类器 遗传算法
下载PDF
一种新的基于SVC和MIVP识别图像脉冲噪声的研究 被引量:1
19
作者 陆丽婷 顾绮芳 潘婷婷 《湖北大学学报(自然科学版)》 CAS 2013年第2期228-231,共4页
利用基于统计理论的数字图像脉冲噪声统计量识别法MIVP法,结合SVC的图像脉冲噪声自适应滤波器,提出一种检测数字图像中脉冲噪声的新方法.实验表明,在不增加时间复杂性的条件下,这一方法的滤波效果比原先的SVC滤波器有明显的改善.
关键词 图像恢复 脉冲噪声 支持向量分类 大数定律 中心极限定理
下载PDF
基于DAGSVC的模拟电路故障字典法 被引量:2
20
作者 姜媛媛 韩振云 崔江 《传感器与微系统》 CSCD 北大核心 2011年第4期12-16,共5页
针对模拟电路的故障诊断和支持向量机分类器的设计问题,讨论了一种基于有向无环图支持向量机分类器(DAGSVC)的故障字典新方法,并比较了几种支持向量机故障分类器的平均测试复杂度指标。通过对2个实际模拟滤波器的实际测试和验证表明:该... 针对模拟电路的故障诊断和支持向量机分类器的设计问题,讨论了一种基于有向无环图支持向量机分类器(DAGSVC)的故障字典新方法,并比较了几种支持向量机故障分类器的平均测试复杂度指标。通过对2个实际模拟滤波器的实际测试和验证表明:该方法性能要优于"1-v-r"SVC,"1-v-1"SVC等常规的故障分类器,并和聚类二叉树SVC的诊断性能接近,适合模拟电路的故障分类和诊断。 展开更多
关键词 模拟电路 故障诊断 故障字典 平均测试复杂度 有向无环图支持向量机分类器
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部