Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The cl...Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The classification system consists of two parts, namely the feature extraction and the automatic recognition. In the feature extraction stage, Phase Space Reconstruction (PSR), a time series analysis tool, is utilized to construct disturbance signal trajectories. For these trajectories, several indices are proposed to form the feature vectors. Support Vector Machines (SVMs) are then implemented to recognize the different patterns and to evaluate the efficiencies. The types of disturbances discussed include a combination of short-term dis-turbances (voltage sags, swells) and long-term disturbances (flickers, harmonics), as well as their homologous single ones. The feasibilities of the proposed approach are verified by simulation with thousands of PQ events. Comparison studies based on Wavelet Transform (WT) and Artificial Neural Network (ANN) are also reported to show its advantages.展开更多
Determination of ammonia nitrogen content in water is the basic item of the environmental water pollution, and is the key index to evaluate the water quality. This article designs a water quality monitoring system bas...Determination of ammonia nitrogen content in water is the basic item of the environmental water pollution, and is the key index to evaluate the water quality. This article designs a water quality monitoring system based on the on-line automatic ammonia nitrogen monitoring system, and establishes a forecasting model based on the weighted least squares support vector machine algorithm. The weighted least squares support vector machine algorithm increases the weight parameter setting, improves the speed and accuracy of prediction learning, and improves the robustness. In this article, a comparison between neural network model and weighted least square support vector machine model is made, which shows that the weighted least squares support vector machine model has better prediction accuracy.展开更多
The behavior of schools of zebrafish (Danio rerio) was studied in acute toxicity environments. Behavioral features were extracted and a method for water quality assessment using support vector machine (SVM) was de...The behavior of schools of zebrafish (Danio rerio) was studied in acute toxicity environments. Behavioral features were extracted and a method for water quality assessment using support vector machine (SVM) was de- veloped. The behavioral parameters of fish were recorded and analyzed during one hour in an environment of a 24-h half-lethal concentration (LC50) of a pollutant. The data were used to develop a method to evaluate water quality, so as 6+ 2+ to give an early indication of toxicity. Four kinds of metal ions (Cu2~, Hg2~, Cr , and Cd ) were used for toxicity testing. To enhance the efficiency and accuracy of assessment, a method combining SVM and a genetic algorithm (GA) was used. The results showed that the average prediction accuracy of the method was over 80% and the time cost was acceptable. The method gave satisfactory results for a variety of metal pollutants, demonstrating that this is an effective approach to the classification of water quality.展开更多
采用 S 变换和支持向量机进行电能质量扰动的分类识别。作为连续小波变换和短时傅立叶变换的发展,S 变换引入了宽度与频率成反向变化的高斯窗,具有与频率相关的分辨率。由于 S 变换具有良好的时频特性,因而非常适合于进行电能质量扰动...采用 S 变换和支持向量机进行电能质量扰动的分类识别。作为连续小波变换和短时傅立叶变换的发展,S 变换引入了宽度与频率成反向变化的高斯窗,具有与频率相关的分辨率。由于 S 变换具有良好的时频特性,因而非常适合于进行电能质量扰动信号特征提取。首先通过 S 变换进行扰动信号特征提取,然后构造支持向量机分类树进行扰动分类。算例表明该方案具有分类准确率高,对噪声不敏感,训练样本少等优点,是电能质量扰动识别的有效方法。展开更多
为及时辨识集约化水产养殖水质变化趋势、动态调控水质,确保无应激环境下健康养殖,该文提出了基于时序列相似数据的最小二乘支持向量回归机(least squares support vector regression,LSSVR)水质溶解氧在线预测模型。采用特征点分段时...为及时辨识集约化水产养殖水质变化趋势、动态调控水质,确保无应激环境下健康养殖,该文提出了基于时序列相似数据的最小二乘支持向量回归机(least squares support vector regression,LSSVR)水质溶解氧在线预测模型。采用特征点分段时间弯曲距离(feature points segmented time warping distance,FPSTWD)算法对在线采集的时间序列数据进行分段与相似度计算,以缩减规模的子序列数据集对LSSVR模型进行快速训练优化,实现了多个LSSVR子模型在线建模,将预测数据序列与LSSVR子模型的相似度匹配,自适应地选取最佳的子模型作为在线预测模型。应用该模型对集约化河蟹福利养殖水质参数溶解氧浓度进行在线预测,模型评价指标中最大相对误差、平均绝对百分比误差、相对均方根误差和运行时间分别为4.76%、8.18%、5.23%、8.32 s。研究结果表明,与其他预测方法相比,该模型具有较好的综合预测性能,能够满足河蟹福利养殖水质在线预测的实际需求,并为集约化水产养殖水质精准调控提供研究基础。展开更多
该文提出一种多标签排位小波支持向量机(rank wavelet support vector machine,Rank-WSVM),并将其应用于电能质量复合扰动分类中。Rank-WSVM将小波技术与多标签排位支持向量机(Rank-SVM)结合,利用小波的优良特性提高分类器的整体性能。...该文提出一种多标签排位小波支持向量机(rank wavelet support vector machine,Rank-WSVM),并将其应用于电能质量复合扰动分类中。Rank-WSVM将小波技术与多标签排位支持向量机(Rank-SVM)结合,利用小波的优良特性提高分类器的整体性能。首先,对电能质量扰动信号进行离散小波分解,计算Tsallis小波熵作为特征向量;然后利用所提出的Rank-WSVM多标签分类器进行分类。仿真结果表明,在不同噪声条件下,该方法有效改善了Rank-SVM的分类性能,可有效识别电压暂降、电压暂升、电压短时中断、脉冲暂态、振荡暂态、谐波和闪变等电能质量扰动及其组合而成的复合扰动。展开更多
基金Project (No. 50437010) supported by the Key Program of the Na-tional Natural Science Foundation of China
文摘Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The classification system consists of two parts, namely the feature extraction and the automatic recognition. In the feature extraction stage, Phase Space Reconstruction (PSR), a time series analysis tool, is utilized to construct disturbance signal trajectories. For these trajectories, several indices are proposed to form the feature vectors. Support Vector Machines (SVMs) are then implemented to recognize the different patterns and to evaluate the efficiencies. The types of disturbances discussed include a combination of short-term dis-turbances (voltage sags, swells) and long-term disturbances (flickers, harmonics), as well as their homologous single ones. The feasibilities of the proposed approach are verified by simulation with thousands of PQ events. Comparison studies based on Wavelet Transform (WT) and Artificial Neural Network (ANN) are also reported to show its advantages.
文摘Determination of ammonia nitrogen content in water is the basic item of the environmental water pollution, and is the key index to evaluate the water quality. This article designs a water quality monitoring system based on the on-line automatic ammonia nitrogen monitoring system, and establishes a forecasting model based on the weighted least squares support vector machine algorithm. The weighted least squares support vector machine algorithm increases the weight parameter setting, improves the speed and accuracy of prediction learning, and improves the robustness. In this article, a comparison between neural network model and weighted least square support vector machine model is made, which shows that the weighted least squares support vector machine model has better prediction accuracy.
基金Project supported by the Natural Science Foundation of Ningbo City (No.2010A610005)the Key Science and Technology Program of Zhejiang Province (No.2011C11049),China
文摘The behavior of schools of zebrafish (Danio rerio) was studied in acute toxicity environments. Behavioral features were extracted and a method for water quality assessment using support vector machine (SVM) was de- veloped. The behavioral parameters of fish were recorded and analyzed during one hour in an environment of a 24-h half-lethal concentration (LC50) of a pollutant. The data were used to develop a method to evaluate water quality, so as 6+ 2+ to give an early indication of toxicity. Four kinds of metal ions (Cu2~, Hg2~, Cr , and Cd ) were used for toxicity testing. To enhance the efficiency and accuracy of assessment, a method combining SVM and a genetic algorithm (GA) was used. The results showed that the average prediction accuracy of the method was over 80% and the time cost was acceptable. The method gave satisfactory results for a variety of metal pollutants, demonstrating that this is an effective approach to the classification of water quality.
文摘采用 S 变换和支持向量机进行电能质量扰动的分类识别。作为连续小波变换和短时傅立叶变换的发展,S 变换引入了宽度与频率成反向变化的高斯窗,具有与频率相关的分辨率。由于 S 变换具有良好的时频特性,因而非常适合于进行电能质量扰动信号特征提取。首先通过 S 变换进行扰动信号特征提取,然后构造支持向量机分类树进行扰动分类。算例表明该方案具有分类准确率高,对噪声不敏感,训练样本少等优点,是电能质量扰动识别的有效方法。
文摘该文提出一种多标签排位小波支持向量机(rank wavelet support vector machine,Rank-WSVM),并将其应用于电能质量复合扰动分类中。Rank-WSVM将小波技术与多标签排位支持向量机(Rank-SVM)结合,利用小波的优良特性提高分类器的整体性能。首先,对电能质量扰动信号进行离散小波分解,计算Tsallis小波熵作为特征向量;然后利用所提出的Rank-WSVM多标签分类器进行分类。仿真结果表明,在不同噪声条件下,该方法有效改善了Rank-SVM的分类性能,可有效识别电压暂降、电压暂升、电压短时中断、脉冲暂态、振荡暂态、谐波和闪变等电能质量扰动及其组合而成的复合扰动。