期刊文献+
共找到2,541篇文章
< 1 2 128 >
每页显示 20 50 100
Support Vector Machine active learning for 3D model retrieval 被引量:6
1
作者 LENG Biao QIN Zheng LI Li-qun 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第12期1953-1961,共9页
In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects... In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects which are marked by the user, and then creates a boundary separating the relevant models from irrelevant ones. What it needs is only a small number of 3D models labelled by the user. It can grasp the user's semantic knowledge rapidly and accurately. Experimental results showed that the proposed algorithm significantly improves the retrieval effectiveness. Compared with four state-of-the-art query refinement schemes for 3D model retrieval, it provides superior retrieval performance after no more than two rounds of relevance feedback. 展开更多
关键词 3D model retrieval Shape descriptor Relevance feedback support vector machine (SVM) active learning
下载PDF
Resting-state functional magnetic resonance imaging and support vector machines for the diagnosis of major depressive disorder in adolescents
2
作者 Zhi-Hui Yu Ren-Qiang Yu +6 位作者 Xing-Yu Wang Wen-Yu Ren Xiao-Qin Zhang Wei Wu Xiao Li Lin-Qi Dai Ya-Lan Lv 《World Journal of Psychiatry》 SCIE 2024年第11期1696-1707,共12页
BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers base... BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers based on amygdala functional connectivity(FC).AIM To investigate the analysis of neuroimaging biomarkers as a streamlined approach for the diagnosis of MDD in adolescents.METHODS Forty-four adolescents diagnosed with MDD and 43 healthy controls were enrolled in the study.Using resting-state functional magnetic resonance imaging,the FC was compared between the adolescents with MDD and the healthy controls,with the bilateral amygdala serving as the seed point,followed by statistical analysis of the results.The support vector machine(SVM)method was then applied to classify functional connections in various brain regions and to evaluate the neurophysiological characteristics associated with MDD.RESULTS Compared to the controls and using the bilateral amygdala as the region of interest,patients with MDD showed significantly lower FC values in the left inferior temporal gyrus,bilateral calcarine,right lingual gyrus,and left superior occipital gyrus.However,there was an increase in the FC value in Vermis-10.The SVM analysis revealed that the reduction in the FC value in the right lingual gyrus could effectively differentiate patients with MDD from healthy controls,achieving a diagnostic accuracy of 83.91%,sensitivity of 79.55%,specificity of 88.37%,and an area under the curve of 67.65%.CONCLUSION The results showed that an abnormal FC value in the right lingual gyrus was effective as a neuroimaging biomarker to distinguish patients with MDD from healthy controls. 展开更多
关键词 Major depressive disorder ADOLESCENT support vector machine machine learning Resting-state functional magnetic resonance imaging NEUROIMAGING BIOMARKER
下载PDF
Facial Expression Recognition Model Depending on Optimized Support Vector Machine 被引量:1
3
作者 Amel Ali Alhussan Fatma M.Talaat +4 位作者 El-Sayed M.El-kenawy Abdelaziz A.Abdelhamid Abdelhameed Ibrahim Doaa Sami Khafaga Mona Alnaggar 《Computers, Materials & Continua》 SCIE EI 2023年第7期499-515,共17页
In computer vision,emotion recognition using facial expression images is considered an important research issue.Deep learning advances in recent years have aided in attaining improved results in this issue.According t... In computer vision,emotion recognition using facial expression images is considered an important research issue.Deep learning advances in recent years have aided in attaining improved results in this issue.According to recent studies,multiple facial expressions may be included in facial photographs representing a particular type of emotion.It is feasible and useful to convert face photos into collections of visual words and carry out global expression recognition.The main contribution of this paper is to propose a facial expression recognitionmodel(FERM)depending on an optimized Support Vector Machine(SVM).To test the performance of the proposed model(FERM),AffectNet is used.AffectNet uses 1250 emotion-related keywords in six different languages to search three major search engines and get over 1,000,000 facial photos online.The FERM is composed of three main phases:(i)the Data preparation phase,(ii)Applying grid search for optimization,and(iii)the categorization phase.Linear discriminant analysis(LDA)is used to categorize the data into eight labels(neutral,happy,sad,surprised,fear,disgust,angry,and contempt).Due to using LDA,the performance of categorization via SVM has been obviously enhanced.Grid search is used to find the optimal values for hyperparameters of SVM(C and gamma).The proposed optimized SVM algorithm has achieved an accuracy of 99%and a 98%F1 score. 展开更多
关键词 Facial expression recognition machine learning linear dis-criminant analysis(LDA) support vector machine(SVM) grid search
下载PDF
SCADA Data-Based Support Vector Machine for False Alarm Identification for Wind Turbine Management
4
作者 Ana María Peco Chacón Isaac Segovia Ramírez Fausto Pedro García Márquez 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2595-2608,共14页
Maintenance operations have a critical influence on power gen-eration by wind turbines(WT).Advanced algorithms must analyze large volume of data from condition monitoring systems(CMS)to determine the actual working co... Maintenance operations have a critical influence on power gen-eration by wind turbines(WT).Advanced algorithms must analyze large volume of data from condition monitoring systems(CMS)to determine the actual working conditions and avoid false alarms.This paper proposes different support vector machine(SVM)algorithms for the prediction and detection of false alarms.K-Fold cross-validation(CV)is applied to evaluate the classification reliability of these algorithms.Supervisory Control and Data Acquisition(SCADA)data from an operating WT are applied to test the proposed approach.The results from the quadratic SVM showed an accuracy rate of 98.6%.Misclassifications from the confusion matrix,alarm log and maintenance records are analyzed to obtain quantitative information and determine if it is a false alarm.The classifier reduces the number of false alarms called misclassifications by 25%.These results demonstrate that the proposed approach presents high reliability and accuracy in false alarm identification. 展开更多
关键词 machine learning classification support vector machine false alarm wind turbine cross-validation
下载PDF
Prediction of Solar Irradiation Using Quantum Support Vector Machine Learning Algorithm
5
作者 Makhamisa Senekane Benedict Molibeli Taele 《Smart Grid and Renewable Energy》 2016年第12期293-301,共9页
Classical machine learning, which is at the intersection of artificial intelligence and statistics, investigates and formulates algorithms which can be used to discover patterns in the given data and also make some fo... Classical machine learning, which is at the intersection of artificial intelligence and statistics, investigates and formulates algorithms which can be used to discover patterns in the given data and also make some forecasts based on the given data. Classical machine learning has its quantum part, which is known as quantum machine learning (QML). QML, which is a field of quantum computing, uses some of the quantum mechanical principles and concepts which include superposition, entanglement and quantum adiabatic theorem to assess the data and make some forecasts based on the data. At the present moment, research in QML has taken two main approaches. The first approach involves implementing the computationally expensive subroutines of classical machine learning algorithms on a quantum computer. The second approach concerns using classical machine learning algorithms on a quantum information, to speed up performance of the algorithms. The work presented in this manuscript proposes a quantum support vector algorithm that can be used to forecast solar irradiation. The novelty of this work is in using quantum mechanical principles for application in machine learning. Python programming language was used to simulate the performance of the proposed algorithm on a classical computer. Simulation results that were obtained show the usefulness of this algorithm for predicting solar irradiation. 展开更多
关键词 QUANTUM Quantum machine learning machine learning support vector machine Quantum support vector machine ENERGY Solar Irradiation
下载PDF
Lithofacies identi cation using support vector machine based on local deep multi-kernel learning 被引量:10
6
作者 Xing-Ye Liu Lin Zhou +1 位作者 Xiao-Hong Chen Jing-Ye Li 《Petroleum Science》 SCIE CAS CSCD 2020年第4期954-966,共13页
Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacie... Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacies and seismic information that is affected by many factors is complicated.Machine learning has received extensive attention in recent years,among which support vector machine(SVM) is a potential method for lithofacies classification.Lithofacies classification involves identifying various types of lithofacies and is generally a nonlinear problem,which needs to be solved by means of the kernel function.Multi-kernel learning SVM is one of the main tools for solving the nonlinear problem about multi-classification.However,it is very difficult to determine the kernel function and the parameters,which is restricted by human factors.Besides,its computational efficiency is low.A lithofacies classification method based on local deep multi-kernel learning support vector machine(LDMKL-SVM) that can consider low-dimensional global features and high-dimensional local features is developed.The method can automatically learn parameters of kernel function and SVM to build a relationship between lithofacies and seismic elastic information.The calculation speed will be expedited at no cost with respect to discriminant accuracy for multi-class lithofacies identification.Both the model data test results and the field data application results certify advantages of the method.This contribution offers an effective method for lithofacies recognition and reservoir prediction by using SVM. 展开更多
关键词 Lithofacies discriminant support vector machine Multi-kernel learning Reservoir prediction machine learning
下载PDF
Incremental support vector machine algorithm based on multi-kernel learning 被引量:7
7
作者 Zhiyu Li Junfeng Zhang Shousong Hu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期702-706,共5页
A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set l... A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set learning problem can be solved effectively. Furthermore, different punishments are adopted in allusion to the training subset and the acquired support vectors, which may help to improve the performance of SVM. Simulation results indicate that the proposed algorithm can not only solve the model selection problem in SVM incremental learning, but also improve the classification or prediction precision. 展开更多
关键词 support vector machine (SVM) incremental learning multiple kernel learning (MKL).
下载PDF
Inverse Learning Control of Nonlinear Systems Using Support Vector Machines
8
作者 胡中辉 李远贵 +1 位作者 蔡云泽 许晓鸣 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第2期135-138,142,共5页
An inverse learning control scheme using the support vector machine (SVM) for regression was proposed. The inverse learning approach is originally researched in the neural networks. Compared with neural networks, SVMs... An inverse learning control scheme using the support vector machine (SVM) for regression was proposed. The inverse learning approach is originally researched in the neural networks. Compared with neural networks, SVMs overcome the problems of local minimum and curse of dimensionality. Additionally, the good generalization performance of SVMs increases the robustness of control system. The method of designing SVM inverse learning controller was presented. The proposed method is demonstrated on tracking problems and the performance is satisfactory. 展开更多
关键词 support vector machines learning control inverse model nonlinear system
下载PDF
Learning control of nonhonolomic robot based on support vector machine
9
作者 冯勇 葛运建 +1 位作者 曹会彬 孙玉香 《Journal of Central South University》 SCIE EI CAS 2012年第12期3400-3406,共7页
A learning controller of nonhonolomic robot in real-time based on support vector machine(SVM)is presented.The controller includes two parts:one is kinematic controller based on nonlinear law,and the other is dynamic c... A learning controller of nonhonolomic robot in real-time based on support vector machine(SVM)is presented.The controller includes two parts:one is kinematic controller based on nonlinear law,and the other is dynamic controller based on SVM.The kinematic controller is aimed to provide desired velocity which can make the steering system stable.The dynamic controller is aimed to transform the desired velocity to control torque.The parameters of the dynamic system of the robot are estimated through SVM learning algorithm according to the training data of sliding windows in real time.The proposed controller can adapt to the changes in the robot model and uncertainties in the environment.Compared with artificial neural network(ANN)controller,SVM controller can converge to the reference trajectory more quickly and the tracking error is smaller.The simulation results verify the effectiveness of the method proposed. 展开更多
关键词 nonhonolomic robot learning control support vector machine nonlinear control law dynamic control
下载PDF
Semi-supervised least squares support vector machine algorithm:application to offshore oil reservoir 被引量:1
10
作者 罗伟平 李洪奇 石宁 《Applied Geophysics》 SCIE CSCD 2016年第2期406-415,421,共11页
At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict th... At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semi- supervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area. 展开更多
关键词 Semi-supervised learning least squares support vector machine seismic attributes reservoir prediction
下载PDF
A Hierarchical Clustering and Fixed-Layer Local Learning Based Support Vector Machine Algorithm for Large Scale Classification Problems 被引量:1
11
作者 吴广潮 肖法镇 +4 位作者 奚建清 杨晓伟 何丽芳 吕浩然 刘小兰 《Journal of Donghua University(English Edition)》 EI CAS 2012年第1期46-50,共5页
It is a challenging topic to develop an efficient algorithm for large scale classification problems in many applications of machine learning. In this paper, a hierarchical clustering and fixed- layer local learning (... It is a challenging topic to develop an efficient algorithm for large scale classification problems in many applications of machine learning. In this paper, a hierarchical clustering and fixed- layer local learning (HCFLL) based support vector machine(SVM) algorithm is proposed to deal with this problem. Firstly, HCFLL hierarchically dusters a given dataset into a modified clustering feature tree based on the ideas of unsupervised clustering and supervised clustering. Then it locally trains SVM on each labeled subtree at a fixed-layer of the tree. The experimental results show that compared with the existing popular algorithms such as core vector machine and decision.tree support vector machine, HCFLL can significantly improve the training and testing speeds with comparable testing accuracy. 展开更多
关键词 hierarchical clustering local learning large scale classification support vector rnachine( SVM
下载PDF
Research on Application of Support Vector Machine in Machine Learning
12
作者 Bowen Duan 《Journal of Electronic Research and Application》 2019年第4期11-14,共4页
In recent years,support vector machine learning methods have gradually become the main research direction of machine learning.The support vector machine has a small structural risk compared with the traditional learni... In recent years,support vector machine learning methods have gradually become the main research direction of machine learning.The support vector machine has a small structural risk compared with the traditional learning method,which can make the training error and the classifier capacity reach a relatively balanced state.Secondly,it also has the advantages of strong adaptability and strong promotion ability and has been widely praised by the industry.The following discussion focuses on the application of support vector machine in machine learning. 展开更多
关键词 support vector machine machine learning FACE Recognition Image PREPROCESSING
下载PDF
Parameter selection of support vector machine for function approximation based on chaos optimization 被引量:18
13
作者 Yuan Xiaofang Wang Yaonan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期191-197,共7页
The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results... The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation. 展开更多
关键词 learning systems support vector machines (SVM) approximation theory parameter selection optimization.
下载PDF
Time series online prediction algorithm based on least squares support vector machine 被引量:8
14
作者 吴琼 刘文颖 杨以涵 《Journal of Central South University of Technology》 EI 2007年第3期442-446,共5页
Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive cal... Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive calculation of block matrix, a new time series online prediction algorithm based on improved LS-SVM was proposed. The historical training results were fully utilized and the computing speed of LS-SVM was enhanced. Then, the improved algorithm was applied to timc series online prediction. Based on the operational data provided by the Northwest Power Grid of China, the method was used in the transient stability prediction of electric power system. The results show that, compared with the calculation time of the traditional LS-SVM(75 1 600 ms), that of the proposed method in different time windows is 40-60 ms, proposed method is above 0.8. So the improved method is online prediction. and the prediction accuracy(normalized root mean squared error) of the better than the traditional LS-SVM and more suitable for time series online prediction. 展开更多
关键词 time series prediction machine learning support vector machine statistical learning theory
下载PDF
Fast Training of Support Vector Machines Using Error-Center-Based Optimization 被引量:3
15
作者 L. Meng, Q. H. Wu Department of Electrical Engineering and Electronics, The University of Liverpool, Liverpool, L69 3GJ, UK 《International Journal of Automation and computing》 EI 2005年第1期6-12,共7页
This paper presents a new algorithm for Support Vector Machine (SVM) training, which trains a machine based on the cluster centers of errors caused by the current machine. Experiments with various training sets show t... This paper presents a new algorithm for Support Vector Machine (SVM) training, which trains a machine based on the cluster centers of errors caused by the current machine. Experiments with various training sets show that the computation time of this new algorithm scales almost linear with training set size and thus may be applied to much larger training sets, in comparison to standard quadratic programming (QP) techniques. 展开更多
关键词 support vector machines quadratic programming pattern classification machine learning
下载PDF
Identification of activity stop locations in GPS trajectories by density-based clustering method combined with support vector machines 被引量:10
16
作者 Lei Gong Hitomi Sato +2 位作者 Toshiyuki Yamamoto Tomio Miwa Takayuki Morikawa 《Journal of Modern Transportation》 2015年第3期202-213,共12页
The identification of activity locations in con- tinuous GPS trajectories is an essential preliminary step in obtaining person trip data and for activity-based trans- portation demand forecasting. In this research, a ... The identification of activity locations in con- tinuous GPS trajectories is an essential preliminary step in obtaining person trip data and for activity-based trans- portation demand forecasting. In this research, a two-step methodology for identifying activity stop locations is pro- posed. In the first step, an improved density-based spatial clustering of applications with noise (DBSCAN) algorithm identifies stop points and moving points; then in the second step, the support vector machines (SVMs) method distin- guishes activity stops from non-activity stops among the identified stop points. A time sequence constraint and a direction change constraint are applied as improvements to DBSCAN (yielding an improved algorithm known as C-DBSCAN). Then three major features are extracted for use in the SVMs method: stop duration, mean distance to the centroid of a cluster of points at a stop location, and the shorter of distances from current location to home and to the workplace. The proposed methodology was tested using GPS data collected from mobile phones in the Nagoya area of Japan. The C-DBSCAN algorithm achieves an accuracy of 90 % in identifying stop points in the first step, while the SVMs method is 96 % accurate in distin- guishing the locations of activity stops from non-activity stops in the second step. Compared to other variants of DBSCAN used to identify activity locations from GPS trajectories, this two-step method is generally superior. 展开更多
关键词 Activity Stop · Non-activity stop · Stopidentification · DBSCAN· support vector machines
下载PDF
Estimating coal reserves using a support vector machine 被引量:3
17
作者 LIU Wen-kai WANG Rui-fang ZHENG Xiao-juan 《Journal of China University of Mining and Technology》 EI 2008年第1期103-106,共4页
The basic principles of the Support Vector Machine (SVM) are introduced in this paper. A specific process to establish an SVM prediction model is given. To improve the precision of coal reserve estimation, a support v... The basic principles of the Support Vector Machine (SVM) are introduced in this paper. A specific process to establish an SVM prediction model is given. To improve the precision of coal reserve estimation, a support vector machine method, based on statistical learning theory, is put forward. The SVM model was trained and tested by using the existing exploration and exploitation data of Chencun mine of Yima bureau’s as the input data. Then coal reserves within a particular region were calculated. These calculated results and the actual results of the exploration block were compared. The maximum relative error was 10.85%, within the scope of acceptable error limits. The results show that the SVM coal reserve calculation method is reliable. This method is simple, practical and valuable. 展开更多
关键词 support vector machine statistical learning theory coal reserve
下载PDF
Support vector machine method for fore-casting future strong earthquakes in Chinese mainland 被引量:1
18
作者 王炜 刘悦 +4 位作者 李国正 吴耿锋 马钦忠 赵利飞 林命週 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第1期30-38,共9页
Statistical learning theory is for small-sample statistics. And support vector machine is a new machine learning method based on the statistical learning theory. The support vector machine not only has solved certain ... Statistical learning theory is for small-sample statistics. And support vector machine is a new machine learning method based on the statistical learning theory. The support vector machine not only has solved certain problems in many learning methods, such as small sample, over fitting, high dimension and local minimum, but also has a higher generalization (forecasting) ability than that of artificial neural networks. The strong earthquakes in Chinese mainland are related to a certain extent to the intensive seismicity along the main plate boundaries in the world, however, the relation is nonlinear. In the paper, we have studied this unclear relation by the support vector machine method for the purpose of forecasting strong earthquakes in Chinese mainland. 展开更多
关键词 statistical learning theory support vector machine artificial neural networks earthquake situation
下载PDF
Support Vector Machine-Based Nonlinear System Modeling and Control 被引量:1
19
作者 张浩然 韩正之 +1 位作者 冯瑞 于志强 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期53-58,共6页
This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework base... This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM. At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness. 展开更多
关键词 support vector machine Statistical learning theory Nonlinear systems Modeling and control.
下载PDF
Support Vector Machine Assisted GPS Navigation in Limited Satellite Visibility 被引量:1
20
作者 Dah-Jing Jwo Jia-Chyi Wu Kuan-Lin Ho 《Computers, Materials & Continua》 SCIE EI 2021年第10期555-574,共20页
This paper investigates performance improvement via the incorporation of the support vector machine(SVM)into the vector tracking loop(VTL)for the Global Positioning System(GPS)in limited satellite visibility.Unlike th... This paper investigates performance improvement via the incorporation of the support vector machine(SVM)into the vector tracking loop(VTL)for the Global Positioning System(GPS)in limited satellite visibility.Unlike the traditional scalar tracking loop(STL),the tracking and navigation modules in the VTL are not independent anymore since the user’s position can be determined by using the information from other satellites and can be predicted on the basis of the states of the user.The method proposed in this paper makes use of the SVM to bridge the GPS signal and prevent the error growth due to signal outage.Similar to the neural network,the SVM is motivated by its ability to approximate an unknown nonlinear input-output mapping through supervised training.The SVM is employed for predicting adequate numerical control oscillator(NCO)inputs,i.e.,providing better prediction of residuals for the Doppler frequency and code phase in order to maintain regular operation of the navigation system.When the navigation processing is in good condition,the SVM is at the training stage,and the output information from the discriminator and navigation filter is adopted as the inputs.Other machine learning(ML)algorithms such as the radial basis function neural network(RBFNN)and the Adaptive Network-Based Fuzzy Inference System(ANFIS)are employed for comparison.Performance evaluation for the SVM assisted architecture as compared to the RBFNNand ANFIS-assisted methods and the un-assisted VTL will be carried out and the performance evaluation during GPS signal outage will be presented.The proposed design is very useful for navigation during the environment of limited satellite visibility to effectively overcome the problem in the environment of GPS outage. 展开更多
关键词 Global positioning system support vector machine machine learning vector tracking loop signal outage
下载PDF
上一页 1 2 128 下一页 到第
使用帮助 返回顶部