期刊文献+
共找到5,007篇文章
< 1 2 250 >
每页显示 20 50 100
Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction 被引量:21
1
作者 史秀志 周健 +2 位作者 吴帮标 黄丹 魏威 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期432-441,共10页
Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50... Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50) resulting from rock blast fragmentation in various mines based on the statistical learning theory. The data base consisted of blast design parameters, explosive parameters, modulus of elasticity and in-situ block size. The seven input independent variables used for the SVMs model for the prediction of X50 of rock blast fragmentation were the ratio of bench height to drilled burden (H/B), ratio of spacing to burden (S/B), ratio of burden to hole diameter (B/D), ratio of stemming to burden (T/B), powder factor (Pf), modulus of elasticity (E) and in-situ block size (XB). After using the 90 sets of the measured data in various mines and rock formations in the world for training and testing, the model was applied to 12 another blast data for validation of the trained support vector regression (SVR) model. The prediction results of SVR were compared with those of artificial neural network (ANN), multivariate regression analysis (MVRA) models, conventional Kuznetsov method and the measured X50 values. The proposed method shows promising results and the prediction accuracy of SVMs model is acceptable. 展开更多
关键词 rock fragmentation BLASTING mean panicle size (X50) support vector machines (SVMs) prediction
下载PDF
Weather Prediction With Multiclass Support Vector Machines in the Fault Detection of Photovoltaic System 被引量:7
2
作者 Wenying Zhang Huaguang Zhang +3 位作者 Jinhai Liu Kai Li Dongsheng Yang Hui Tian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期520-525,共6页
Since the efficiency of photovoltaic(PV) power is closely related to the weather,many PV enterprises install weather instruments to monitor the working state of the PV power system.With the development of the soft mea... Since the efficiency of photovoltaic(PV) power is closely related to the weather,many PV enterprises install weather instruments to monitor the working state of the PV power system.With the development of the soft measurement technology,the instrumental method seems obsolete and involves high cost.This paper proposes a novel method for predicting the types of weather based on the PV power data and partial meteorological data.By this method,the weather types are deduced by data analysis,instead of weather instrument A better fault detection is obtained by using the support vector machines(SVM) and comparing the predicted and the actual weather.The model of the weather prediction is established by a direct SVM for training multiclass predictors.Although SVM is suitable for classification,the classified results depend on the type of the kernel,the parameters of the kernel,and the soft margin coefficient,which are difficult to choose.In this paper,these parameters are optimized by particle swarm optimization(PSO) algorithm in anticipation of good prediction results can be achieved.Prediction results show that this method is feasible and effective. 展开更多
关键词 Fault detection multiclass support vector machines photovoltaic power system particle swarm optimization(PSO) weather prediction
下载PDF
Temperature prediction control based on least squares support vector machines 被引量:5
3
作者 BinLIU HongyeSU +1 位作者 WeihuaHUANG JianCHU 《控制理论与应用(英文版)》 EI 2004年第4期365-370,共6页
A prediction control algorithm is presented based on least squares support vector machines (LS-SVM) model for a class of complex systems with strong nonlinearity. The nonlinear off-line model of the controlled plant i... A prediction control algorithm is presented based on least squares support vector machines (LS-SVM) model for a class of complex systems with strong nonlinearity. The nonlinear off-line model of the controlled plant is built by LS-SVM with radial basis function (RBF) kernel. In the process of system running, the off-line model is linearized at each sampling instant, and the generalized prediction control (GPC) algorithm is employed to implement the prediction control for the controlled plant. The obtained algorithm is applied to a boiler temperature control system with complicated nonlinearity and large time delay. The results of the experiment verify the effectiveness and merit of the algorithm. 展开更多
关键词 Predictive control Least squares support vector machines RBF kernel function Generalized prediction control
下载PDF
Study of tide prediction method influenced by nonperiodic factors based on support vector machines 被引量:3
4
作者 HE Shi-jun ZHOU Wenjun +1 位作者 ZHOU Ruyan HUANG Dongmei 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第5期160-164,共5页
Harmonic analysis, the traditional tidal forecasting method, cannot take into account the impact of noncyclical factors, and is also based on the BP neural network tidal prediction model which is easily limited by the... Harmonic analysis, the traditional tidal forecasting method, cannot take into account the impact of noncyclical factors, and is also based on the BP neural network tidal prediction model which is easily limited by the amount of data. According to the movement of celestial bodies, and considering the insufficient tidal characteristics of historical data which are impacted by the nonperiodic weather, a tidal prediction method is designed based on support vector machine (SVM) to carry out the simulation experiment by using tidal data from Xiamen Tide Gauge, Luchaogang Tide Gauge and Weifang Tide Gauge individually. And the results show that the model satisfactorily carries out the tide prediction which is influenced by noncyclical factors. At the same time, it also proves that the proposed prediction method, which when compared with harmonic analysis method and the BP neural network method, has faster modeling speed, higher prediction precision and stronger generalization ability. 展开更多
关键词 tidal prediction support vector machines celestial motion law harmonic analysis BP neural network nonperiodic factors
下载PDF
Chaotic time series prediction using fuzzy sigmoid kernel-based support vector machines 被引量:2
5
作者 刘涵 刘丁 邓凌峰 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第6期1196-1200,共5页
Support vector machines (SVM) have been widely used in chaotic time series predictions in recent years. In order to enhance the prediction efficiency of this method and implement it in hardware, the sigmoid kernel i... Support vector machines (SVM) have been widely used in chaotic time series predictions in recent years. In order to enhance the prediction efficiency of this method and implement it in hardware, the sigmoid kernel in SVM is drawn in a more natural way by using the fuzzy logic method proposed in this paper. This method provides easy hardware implementation and straightforward interpretability. Experiments on two typical chaotic time series predictions have been carried out and the obtained results show that the average CPU time can be reduced significantly at the cost of a small decrease in prediction accuracy, which is favourable for the hardware implementation for chaotic time series prediction. 展开更多
关键词 support vector machines chaotic time series prediction fuzzy sigmoid kernel
下载PDF
Prediction of Solar Irradiation Using Quantum Support Vector Machine Learning Algorithm
6
作者 Makhamisa Senekane Benedict Molibeli Taele 《Smart Grid and Renewable Energy》 2016年第12期293-301,共9页
Classical machine learning, which is at the intersection of artificial intelligence and statistics, investigates and formulates algorithms which can be used to discover patterns in the given data and also make some fo... Classical machine learning, which is at the intersection of artificial intelligence and statistics, investigates and formulates algorithms which can be used to discover patterns in the given data and also make some forecasts based on the given data. Classical machine learning has its quantum part, which is known as quantum machine learning (QML). QML, which is a field of quantum computing, uses some of the quantum mechanical principles and concepts which include superposition, entanglement and quantum adiabatic theorem to assess the data and make some forecasts based on the data. At the present moment, research in QML has taken two main approaches. The first approach involves implementing the computationally expensive subroutines of classical machine learning algorithms on a quantum computer. The second approach concerns using classical machine learning algorithms on a quantum information, to speed up performance of the algorithms. The work presented in this manuscript proposes a quantum support vector algorithm that can be used to forecast solar irradiation. The novelty of this work is in using quantum mechanical principles for application in machine learning. Python programming language was used to simulate the performance of the proposed algorithm on a classical computer. Simulation results that were obtained show the usefulness of this algorithm for predicting solar irradiation. 展开更多
关键词 QUANTUM Quantum machine learning machine learning support vector machine Quantum support vector machine ENERGY Solar Irradiation
下载PDF
Endpoint Prediction of EAF Based on Multiple Support Vector Machines 被引量:12
7
作者 YUAN Ping MAO Zhi-zhong WANG Fu-li 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第2期20-24,29,共6页
The endpoint parameters are very important to the process of EAF steel-making, but their on-line measurement is difficult. The soft sensor technology is widely used for the prediction of endpoint parameters. Based on ... The endpoint parameters are very important to the process of EAF steel-making, but their on-line measurement is difficult. The soft sensor technology is widely used for the prediction of endpoint parameters. Based on the analysis of the smelting process of EAF and the advantages of support vector machines, a soft sensor model for predicting the endpoint parameters was built using multiple support vector machines (MSVM). In this model, the input space was divided by subtractive clustering and a sub-model based on LS-SVM was built in each sub-space. To decrease the correlation among the sub-models and to improve the accuracy and robustness of the model, the sub- models were combined by Principal Components Regression. The accuracy of the soft sensor model is perfectly improved. The simulation result demonstrates the practicability and efficiency of the MSVM model for the endpoint prediction of EAF. 展开更多
关键词 endpoint prediction EAF soft sensor model multiple support vector machine (MSVM) principal components regression (PCR)
下载PDF
Resting-state functional magnetic resonance imaging and support vector machines for the diagnosis of major depressive disorder in adolescents
8
作者 Zhi-Hui Yu Ren-Qiang Yu +6 位作者 Xing-Yu Wang Wen-Yu Ren Xiao-Qin Zhang Wei Wu Xiao Li Lin-Qi Dai Ya-Lan Lv 《World Journal of Psychiatry》 SCIE 2024年第11期1696-1707,共12页
BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers base... BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers based on amygdala functional connectivity(FC).AIM To investigate the analysis of neuroimaging biomarkers as a streamlined approach for the diagnosis of MDD in adolescents.METHODS Forty-four adolescents diagnosed with MDD and 43 healthy controls were enrolled in the study.Using resting-state functional magnetic resonance imaging,the FC was compared between the adolescents with MDD and the healthy controls,with the bilateral amygdala serving as the seed point,followed by statistical analysis of the results.The support vector machine(SVM)method was then applied to classify functional connections in various brain regions and to evaluate the neurophysiological characteristics associated with MDD.RESULTS Compared to the controls and using the bilateral amygdala as the region of interest,patients with MDD showed significantly lower FC values in the left inferior temporal gyrus,bilateral calcarine,right lingual gyrus,and left superior occipital gyrus.However,there was an increase in the FC value in Vermis-10.The SVM analysis revealed that the reduction in the FC value in the right lingual gyrus could effectively differentiate patients with MDD from healthy controls,achieving a diagnostic accuracy of 83.91%,sensitivity of 79.55%,specificity of 88.37%,and an area under the curve of 67.65%.CONCLUSION The results showed that an abnormal FC value in the right lingual gyrus was effective as a neuroimaging biomarker to distinguish patients with MDD from healthy controls. 展开更多
关键词 Major depressive disorder ADOLESCENT support vector machine machine learning Resting-state functional magnetic resonance imaging NEUROIMAGING BIOMARKER
下载PDF
Total organic carbon content logging prediction based on machine learning:A brief review 被引量:2
9
作者 Linqi Zhu Xueqing Zhou +1 位作者 Weinan Liu Zheng Kong 《Energy Geoscience》 2023年第2期100-107,共8页
The total organic carbon content usually determines the hydrocarbon generation potential of a formation.A higher total organic carbon content often corresponds to a greater possibility of generating large amounts of o... The total organic carbon content usually determines the hydrocarbon generation potential of a formation.A higher total organic carbon content often corresponds to a greater possibility of generating large amounts of oil or gas.Hence,accurately calculating the total organic carbon content in a formation is very important.Present research is focused on precisely calculating the total organic carbon content based on machine learning.At present,many machine learning methods,including backpropagation neural networks,support vector regression,random forests,extreme learning machines,and deep learning,are employed to evaluate the total organic carbon content.However,the principles and perspectives of various machine learning algorithms are quite different.This paper reviews the application of various machine learning algorithms to deal with total organic carbon content evaluation problems.Of various machine learning algorithms used for TOC content predication,two algorithms,the backpropagation neural network and support vector regression are the most commonly used,and the backpropagation neural network is sometimes combined with many other algorithms to achieve better results.Additionally,combining multiple algorithms or using deep learning to increase the number of network layers can further improve the total organic carbon content prediction.The prediction by backpropagation neural network may be better than that by support vector regression;nevertheless,using any type of machine learning algorithm improves the total organic carbon content prediction in a given research block.According to some published literature,the determination coefficient(R^(2))can be increased by up to 0.46 after using machine learning.Deep learning algorithms may be the next breakthrough direction that can significantly improve the prediction of the total organic carbon content.Evaluating the total organic carbon content based on machine learning is of great significance. 展开更多
关键词 Total organic carbon content Well logging machine learning Backpropagation neural network support vector regression
下载PDF
Yarn Properties Prediction Based on Machine Learning Method 被引量:1
10
作者 杨建国 吕志军 李蓓智 《Journal of Donghua University(English Edition)》 EI CAS 2007年第6期781-786,共6页
Although many works have been done to construct prediction models on yarn processing quality,the relation between spinning variables and yarn properties has not been established conclusively so far.Support vector mach... Although many works have been done to construct prediction models on yarn processing quality,the relation between spinning variables and yarn properties has not been established conclusively so far.Support vector machines(SVMs),based on statistical learning theory,are gaining applications in the areas of machine learning and pattern recognition because of the high accuracy and good generalization capability.This study briefly introduces the SVM regression algorithms,and presents the SVM based system architecture for predicting yarn properties.Model selection which amounts to search in hyper-parameter space is performed for study of suitable parameters with grid-research method.Experimental results have been compared with those of artificial neural network(ANN)models.The investigation indicates that in the small data sets and real-life production,SVM models are capable of remaining the stability of predictive accuracy,and more suitable for noisy and dynamic spinning process. 展开更多
关键词 machine learning support vector machines artificial neural networks structure risk minimization yarn quality prediction
下载PDF
Price Prediction of Seasonal Items Using Machine Learning and Statistical Methods
11
作者 Mohamed Ali Mohamed Ibrahim Mahmoud El-Henawy Ahmad Salah 《Computers, Materials & Continua》 SCIE EI 2022年第2期3473-3489,共17页
Price prediction of goods is a vital point of research due to how common e-commerce platforms are.There are several efforts conducted to forecast the price of items using classicmachine learning algorithms and statist... Price prediction of goods is a vital point of research due to how common e-commerce platforms are.There are several efforts conducted to forecast the price of items using classicmachine learning algorithms and statisticalmodels.These models can predict prices of various financial instruments,e.g.,gold,oil,cryptocurrencies,stocks,and second-hand items.Despite these efforts,the literature has no model for predicting the prices of seasonal goods(e.g.,Christmas gifts).In this context,we framed the task of seasonal goods price prediction as a regression problem.First,we utilized a real online trailer dataset of Christmas gifts and then we proposed several machine learningbased models and one statistical-based model to predict the prices of these seasonal products.Second,we utilized a real-life dataset of Christmas gifts for the prediction task.Then,we proposed support vector regressor(SVR),linear regression,random forest,and ridgemodels as machine learningmodels for price prediction.Next,we proposed an autoregressive-integrated-movingaverage(ARIMA)model for the same purpose as a statistical-based model.Finally,we evaluated the performance of the proposed models;the comparison shows that the best performing model was the random forest model,followed by the ARIMA model. 展开更多
关键词 ARIMA machine learning price prediction random forest RIDGE support vector regressor
下载PDF
Machine learning methods for rockburst prediction-state-of-the-art review 被引量:29
12
作者 Yuanyuan Pu Derek B.Apel +1 位作者 Victor Liu Hani Mitri 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第4期565-570,共6页
One of the most serious mining disasters in underground mines is rockburst phenomena.They can lead to injuries and even fatalities as well as damage to underground openings and mining equipment.This has forced many re... One of the most serious mining disasters in underground mines is rockburst phenomena.They can lead to injuries and even fatalities as well as damage to underground openings and mining equipment.This has forced many researchers to investigate alternative methods to predict the potential for rockburst occurrence.However,due to the highly complex relation between geological,mechanical and geometric parameters of the mining environment,the traditional mechanics-based prediction methods do not always yield precise results.With the emergence of machine learning methods,a breakthrough in the prediction of rockburst occurrence has become possible in recent years.This paper presents a state-ofthe-art review of various applications of machine learning methods for the prediction of rockburst potential.First,existing rockburst prediction methods are introduced,and the limitations of such methods are highlighted.A brief overview of typical machine learning methods and their main features as predictive tools is then presented.The current applications of machine learning models in rockburst prediction are surveyed,with related mechanisms,technical details and performance analysis. 展开更多
关键词 ROCKBURST prediction BURST LIABILITY Artificial NEURAL network support vector machine Deep learning
下载PDF
Development of a depression in Parkinson's disease prediction model using machine learning 被引量:9
13
作者 Haewon Byeon 《World Journal of Psychiatry》 SCIE 2020年第10期234-244,共11页
BACKGROUND It is important to diagnose depression in Parkinson’s disease(DPD)as soon as possible and identify the predictors of depression to improve quality of life in Parkinson’s disease(PD)patients.AIM To develop... BACKGROUND It is important to diagnose depression in Parkinson’s disease(DPD)as soon as possible and identify the predictors of depression to improve quality of life in Parkinson’s disease(PD)patients.AIM To develop a model for predicting DPD based on the support vector machine,while considering sociodemographic factors,health habits,Parkinson's symptoms,sleep behavior disorders,and neuropsychiatric indicators as predictors and provide baseline data for identifying DPD.METHODS This study analyzed 223 of 335 patients who were 60 years or older with PD.Depression was measured using the 30 items of the Geriatric Depression Scale,and the explanatory variables included PD-related motor signs,rapid eye movement sleep behavior disorders,and neuropsychological tests.The support vector machine was used to develop a DPD prediction model.RESULTS When the effects of PD motor symptoms were compared using“functional weight”,late motor complications(occurrence of levodopa-induced dyskinesia)were the most influential risk factors for Parkinson's symptoms.CONCLUSION It is necessary to develop customized screening tests that can detect DPD in the early stage and continuously monitor high-risk groups based on the factors related to DPD derived from this predictive model in order to maintain the emotional health of PD patients. 展开更多
关键词 Depression in Parkinson's disease Supervised machine learning Neuropsychological test Risk factor support vector machine Rapid eye movement sleep behavior disorders
下载PDF
Fusion-Based Machine Learning Architecture for Heart Disease Prediction 被引量:3
14
作者 Muhammad Waqas Nadeem Hock Guan Goh +3 位作者 Muhammad Adnan Khan Muzammil Hussain Muhammad Faheem Mushtaq Vasaki a/p Ponnusamy 《Computers, Materials & Continua》 SCIE EI 2021年第5期2481-2496,共16页
The contemporary evolution in healthcare technologies plays a considerable and signicant role to improve medical services and save human lives.Heart disease or cardiovascular disease is the most fatal and complex dise... The contemporary evolution in healthcare technologies plays a considerable and signicant role to improve medical services and save human lives.Heart disease or cardiovascular disease is the most fatal and complex disease which it is hardly to be detected through our naked eyes,as numerous people have been suffering from this disease globally.Heart attacks occur when the ranges of vital signs such as blood pressure,pulse rate,and body temperature exceed their normal values.The efcient diagnosis of heart diseases could play a substantial role in the eld of cardiology,while diagnostic time could be reduced.It has been a key challenge for researchers and medical experts to diagnose heart diseases accurately and timely.Therefore,machine learning-based techniques are used for the diagnosis with higher accuracy,using datasets compiled from former medical patients’reports.In recent years,numerous studies have been presented in the literature propose machine learning techniques for diagnosing heart diseases.However,the existing techniques have some limitations in terms of their accuracy.In this paper,a novel Support Vector Machine(SVM)based architecture for heart disease prediction,empowered with a fuzzy based decision level fusion,is presented.The SVMbased architecture has improved the accuracy signicantly as compared to existing solutions,where 96.23%accuracy has been achieved. 展开更多
关键词 Heart disease machine learning support vector machine fuzzy logic FUSION CARDIOVASCULAR
下载PDF
Supervised Machine Learning-Based Prediction of COVID-19 被引量:2
15
作者 Atta-ur-Rahman Kiran Sultan +7 位作者 Iftikhar Naseer Rizwan Majeed Dhiaa Musleh Mohammed Abdul Salam Gollapalli Sghaier Chabani Nehad Ibrahim Shahan Yamin Siddiqui Muhammad Adnan Khan 《Computers, Materials & Continua》 SCIE EI 2021年第10期21-34,共14页
COVID-19 turned out to be an infectious and life-threatening viral disease,and its swift and overwhelming spread has become one of the greatest challenges for the world.As yet,no satisfactory vaccine or medication has... COVID-19 turned out to be an infectious and life-threatening viral disease,and its swift and overwhelming spread has become one of the greatest challenges for the world.As yet,no satisfactory vaccine or medication has been developed that could guarantee its mitigation,though several efforts and trials are underway.Countries around the globe are striving to overcome the COVID-19 spread and while they are finding out ways for early detection and timely treatment.In this regard,healthcare experts,researchers and scientists have delved into the investigation of existing as well as new technologies.The situation demands development of a clinical decision support system to equip the medical staff ways to timely detect this disease.The state-of-the-art research in Artificial intelligence(AI),Machine learning(ML)and cloud computing have encouraged healthcare experts to find effective detection schemes.This study aims to provide a comprehensive review of the role of AI&ML in investigating prediction techniques for the COVID-19.A mathematical model has been formulated to analyze and detect its potential threat.The proposed model is a cloud-based smart detection algorithm using support vector machine(CSDC-SVM)with cross-fold validation testing.The experimental results have achieved an accuracy of 98.4%with 15-fold cross-validation strategy.The comparison with similar state-of-the-art methods reveals that the proposed CSDC-SVM model possesses better accuracy and efficiency. 展开更多
关键词 COVID-19 CSDC-SVM artificial intelligence machine learning cloud computing support vector machine
下载PDF
Prediction of Cardiovascular Disease Using Machine Learning Technique—A Modern Approach
16
作者 Visvasam Devadoss Ambeth Kumar Chetan Swarup +4 位作者 Indhumathi Murugan Abhishek Kumar Kamred Udham Singh Teekam Singh Ramu Dubey 《Computers, Materials & Continua》 SCIE EI 2022年第4期855-869,共15页
Cardio Vascular disease(CVD),involving the heart and blood vessels is one of the most leading causes of death throughout the world.There are several risk factors for causing heart diseases like sedentary lifestyle,unh... Cardio Vascular disease(CVD),involving the heart and blood vessels is one of the most leading causes of death throughout the world.There are several risk factors for causing heart diseases like sedentary lifestyle,unhealthy diet,obesity,diabetes,hypertension,smoking and consumption of alcohol,stress,hereditary factory etc.Predicting cardiovascular disease and improving and treating the risk factors at an early stage are of paramount importance to save the precious life of a human being.At present,the highly stressful life with bad lifestyle activities causes heart disease at a very young age.The main aim of this research is to predict the premature heart disease based on machine learning algorithms.This paper deals with a novel approach using the machine learning algorithm for predicting the cardiovascular disease at the premature stage itself.Support Vector Machine(SVM)is used for segregating the CVD patients based on their symptoms and medical observation.The experimentation results by using the proposed method will facilitate the medical practitioners to provide suitable treatment for the patients on time.A sophisticated model has been developed with the current approach to examine the various stages of CVD and the performance metrics used have given effective and fruitful results as compared to other machine learning techniques. 展开更多
关键词 machine learning support vector machine CLASSIFICATION cardiovascular disease
下载PDF
Machine Learning-Based Prediction of Oil-Water Flow Dynamics in Carbonate Reservoirs
17
作者 Xianhe Yue Shunshe Luo 《Fluid Dynamics & Materials Processing》 EI 2022年第4期1195-1203,共9页
Because carbonate rocks have a wide range of reservoir forms,a low matrix permeability,and a complicated seam hole formation,using traditional capacity prediction methods to estimate carbonate reservoirs can lead to s... Because carbonate rocks have a wide range of reservoir forms,a low matrix permeability,and a complicated seam hole formation,using traditional capacity prediction methods to estimate carbonate reservoirs can lead to significant errors.We propose a machine learning-based capacity prediction method for carbonate rocks by analyzing the degree of correlation between various factors and three machine learning models:support vector machine,BP neural network,and elastic network.The error rate for these three models are 10%,16%,and 33%,respectively(according to the analysis of 40 training wells and 10 test wells). 展开更多
关键词 Carbonate rock machine learning support vector machine fluid dynamics neural network
下载PDF
Comparative study of different machine learning models in landslide susceptibility assessment: A case study of Conghua District, Guangzhou, China
18
作者 Ao Zhang Xin-wen Zhao +8 位作者 Xing-yuezi Zhao Xiao-zhan Zheng Min Zeng Xuan Huang Pan Wu Tuo Jiang Shi-chang Wang Jun He Yi-yong Li 《China Geology》 CAS CSCD 2024年第1期104-115,共12页
Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Co... Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems. 展开更多
关键词 Landslides susceptibility assessment machine learning Logistic Regression Random Forest support vector machines XGBoost Assessment model Geological disaster investigation and prevention engineering
下载PDF
Machine learning-assisted efficient design of Cu-based shape memory alloy with specific phase transition temperature 被引量:2
19
作者 Mengwei Wu Wei Yong +2 位作者 Cunqin Fu Chunmei Ma Ruiping Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期773-785,共13页
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac... The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys. 展开更多
关键词 machine learning support vector regression shape memory alloys martensitic transformation temperature
下载PDF
Inverse Learning Control of Nonlinear Systems Using Support Vector Machines
20
作者 胡中辉 李远贵 +1 位作者 蔡云泽 许晓鸣 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第2期135-138,142,共5页
An inverse learning control scheme using the support vector machine (SVM) for regression was proposed. The inverse learning approach is originally researched in the neural networks. Compared with neural networks, SVMs... An inverse learning control scheme using the support vector machine (SVM) for regression was proposed. The inverse learning approach is originally researched in the neural networks. Compared with neural networks, SVMs overcome the problems of local minimum and curse of dimensionality. Additionally, the good generalization performance of SVMs increases the robustness of control system. The method of designing SVM inverse learning controller was presented. The proposed method is demonstrated on tracking problems and the performance is satisfactory. 展开更多
关键词 support vector machines learning control inverse model nonlinear system
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部